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Absiract. We discuss some of the fundamental properties unique fo magnetic multilayers.
Complex spin configurations are examined for many different systems and are shown to arise
from a simple competition between exchange and Zeeman energies. The spin configurations
found in multilayer systems determine macroscopic properties such as the static susceptibility
and magnetization, and can lead to anomalous field and temperature behaviour. We also
discuss the dynamic behaviour of magnetic multilayers. Emphasis is placed on spin waves
in magnetic multilayers with canted spin configurations and the softening of modes at magnetic
phase transitions. Furthermore we show that spin wave excitations provide a powerful method
for studying exchange interactions and spin configurations. Finally, the phenomenon of giant
magnetoresistance in magnetic muitilayers, where the resistivity of the metallic structure can be
changed by over 60% at room temperature, is discussed. Simple theoretical approaches are used
to understand and predict the properties of the multilayer systems and comparisons between
theory and experiment are steessed.
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1. Introduction

Magnetic muitilayers have attracted significant attention recently because of a wide array
of fascinating properties. The study of multilayer systems has been motivated by the idea
that the properties of multilayer systems can be significantly different from those of any of
the components. The reasons for this include:

(1) Interface contributions—since interface effects usually penetrate at least a few layers
into the bulk, in thin films the interface may profoundly influence the entire film. Repetition
of interfaces as found in a multilayer allows one to prepare a macroscopic bulk sample with
properties dominated by the interfaces.

(2) Coilective contributions—the layered strocture itself can allow new static
configurations and new dynamic modes. In the case of a periodic multilayered system,
a superlattice, the new periodicity introduces band gaps in the dispersion relations for the
fundamental excitations in the structure. As usual, these gaps play a significant role in
establishing the properties of the material.

(3) The properties of the multilayer may be tailored—the multilayer structure is
synthetically prepared. High-guality muliilayers are fabricated with the thicknesses of
the different materials varying from about 10 A to 200 A, By varying the microscopic
structure, i.e. the layering patiern, the macroscopic properties can be altered to meet desired
characteristics.

Let us now examine these ideas in a little more detail, and in particular how these ideas
are reflected in a magnetic multilayer. In figure 1 we show a schematic diagram for a
simple magnetic superlattice consisting of alternating films of different magnetic materials.
Because of the Jayered structure the magnetic mements (magnitude and orientation) can
vary significantly from layer to layer.

At the interfaces, everything can be and, in fact, is likely to be different. For example,
the interface exchange constant ¢can have a different sign from the exchange in the bulk of
either magnetic material, This occurs in Fe/Gd and Co/Gd multilayer systems [1, 2] where
Gd, Fe and Co are all ferromagnets, but the coupling across the Fe/Gd or Co/Gd interface
is antiferromagnetic [3,4]. The spin magnitudes for atoms ar the interfaces can be quite
different from those in the bulk and may be either enhanced or reduced. Anisotropy fields
which in the bulk direct the spins parallel to the layers might at the interface direct the spins
perpendicular to the layers [5, 6].

In terms of collective features in equilibrium structures, one of the most interesting
magnetic examples is found in systems that have magnetic unit cells which are larger than
the chemical unit celis. A representative case here is found in GdfY superlattices [7, 8.
Although Y is non-magnetic, there is an effective antiferromagnetic interaction between
blocks of Gd spins for certain thicknesses of intervening Y layers. With no applied field,
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'Hayer n-1
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Figure 1. A schematic diagram for the unit cell of a simple
magnetic superlattice consisting of alternating films of different
magnetic materials. We deal with structures where afl the spins in
a layer are identical, but the magnitude of the spin §g, in layer #,
and its orientation may change from layer to layer. The exchange
coupling between two layers is also shown schematically.

JMayer n+1

neighbouring Gd films have oppositely directed spins, i.e. we have something similar to
a macroscopic antiferromagnet. If a magnetic field is applied parallel to the layers, the
system goes essentially into the macroscopic equivalent of the antiferromagnetic spin-flop
state. Here the spins in one Gd film are in plane but canted away from the applied field.
In a neighbouring film the Gd spins are canted in the other direction. The magnetic repeat
distance in either case is two chemical unit cells.

Collective features are also seen in the magnetic excitations [9-11]. Even in layered
magnetic-non-magnetic systems one may have a collective excitation of the system because
the magnetic films interact via long-range dipolar fields. Of course in magnetic/magnetic
structures the spins interact via both the short-range exchange interactions and the dipolar
fields.

Magnetic materials are used in a variety of applications, including magnetoresistive
heads and magnetic or magneto-optical recording. For these applications it is desirable to
be able to adjust or tune features of the magnetic materials in order to achieve optimum
results. Magnetic properties which can be altered by changing the layering pattern include
coercive fields, saturation magnetization, magnetization as a function of temperature, static
and dynamic susceptibility, and compensation points.

In the next three sections, we present a brief review of some of the properties
of magnetic multilayers. We stress simple theoretical approaches which are useful in
understanding and predicting the properties of magnetic multilayers. Details of growth
techniques and experimental characterization of magnetic multilayers can be found in a
number of exceilent review articles [12, 13]. In section 2 we concentrate on the equilibrium
structures for magnetic superlattices and how the experimental results can be understood with
a simple mean-field model. Section 3 is devoted to a discussion of magnetic excitations
in superiattices, while section 4 discusses an exciting surprise in magnetic multilayers—
the phenomena of giant magnetoresistance. Finally there are some concluding remarks in
section 5.

2. Equilibrium spin configurations

By now many different layered structures of magnetic and non-magnetic materials have
been fabricated. Examples (meant to be illustrative rather than exhaustive) of these include
multilayers constructed by alternating layers of:

(1) ferromagnets with
non-magnets—Ni/Mo [10, 141, Fe/Si [15], Gd/Y [7, 8], Co/Ru [16]
ferromagnets (ferromagnetic interfacial coupling)—Fe/Ni [17]
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ferromagnets (antiferromagnetic interfacial coupling)—«Fe/Gd [18-24], Co/Gd [2]
helimagnets—Gd/Dy [25, 26]
antiferromagnets—Fe/Cr (27]

(2) helical or conical with non-magnets—Dy/Y [28], Ho/Y [13], Er/Y [29];
(3) antiferromagnets with antiferromagnets—FeF,/CoF; [30] and Fe;04/NiO [31].

These classifications can be somewhat misleading. For example bulk Y is non-magnetic,
but, as mentioned earlier, when sandwiched between Gd or Dy films, Y mediates an
effective exchange interaction between the magnetically ordered films. Similarly, bulk Cr is
antiferromagnetic (technically one has a spin density wave in Cr but the antiferromagnetic
structure is stabilized with the addition of a few impurities); however, this does not appear
to play a fundamental role in the Fe/Cr superlattices.

The variety of magnetic materials used as building blacks in the multilayers has led to
an enormous range of resulting magnetic behaviour. Essentially these structures form a new
class of magnetic materials with properties significantly different from their constituents.
The basis for most of these new properties is the magnetic structure of the multilayer. Thus
is this section we explore a simple theoretical technique for determining equilibrium spin
configurations. This technique is then applied to some of the more interesting magnetic
muttilayer structures. In particular, we discuss bulk structures of Gd/Y, Fe/Gd and Gd/Dy
for which both theoretical and experimental results are available. We also lock at changes
in these structures which appear in finite superlattices due to surface effects.

2.1. Theoretical development

The equilibrium spin structure is, of course, determined by the condition that the free
energy shouid be a minimum. In principle there could be many contributions to the total
free energy coming from, for example, the exchange energy, the Zeeman energy of the spins

in an external field, magnetoelastic energy, and anisotropy energy. Thus the Hamiltonian
for the system is of the form

H =Hex+HZneman+HME+Hanis (1)

where
1
He= 5 45i5) 2
i

is the exchange energy; Hyg is the magnetoelastic energy and Hyys is the anisotropy energy.
Finally, the energy of the individual spins in the presence of a magnetic field is given by

Hzeeman = —gin ) Si + Ho. 3)

Here the sums involve the spins at sites i and j. In the systems to be considered thronghout
we will assume that all spins within an atomic layer lie in the plane of the layer and all
point in the same direction. As we will see explicitly below this allows a treatment where
one layer interacts with another in contrast to sums over all individual spins.

Simple considerations about how these various terms change as the number of layers
in a unit cell is changed allow us to understand one reason for the great adjustability
of the magnetic muitilayer structure. As an example, the interface exchange energy is
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essentially independent of the number of layers of spins within each film. In contrast the
Zeeman energy ought to scale nearly linearly with the number of layers of spins. As a
result, in thin films interface exchange energy plays a dominant role in determining the
equilibrium structure while for thicker films the Zeeman energy is also significant. This
competition between interface exchange energy and Zeeman energy can lead to a varety of
unique phase transitions between different equilibrium structures which are quite sensitive
to external applied fields.

Clearly the Hamiltonian of equation (1) can be quite challenging. We review
here a simpler model which has been used to study equilibrium structures and
explain magnetization data in several superlattices [32-39]. We neglect anisotropy and
magnetoelastic energies and study a Hamiltonian with an effective exchange coupling
between spins in different layers. In this case the Hamiltonian can be writien

1
H= 132 Z E-’nmsn' . Sn+m = Z gnptslHp - S, €Y
yer # m=0,+1.42 layer n

where J,, is the effective interlayer coupling between spins in layers # and » 4 m and g,
is the effective Land€ g factor for the spins S, in layer n. Here S, represents all the spins
in a layer since they are presumed parallel. Also in this expression we explicitly have an
exchange interaction between spins in the same Iayer (m = 0), and spins in next (m = £1)
and next-nearest (m = +2) layers. A number of potential complications exist even in
this simplified Hamiltonian. For instance the Hamiltonian needs to be modified if the two
materials have different densities or different crystal structures, However we neglect these
effects in our simple treatment.

The above Hamiltonian can be solved, approximately, by several methods. One can
convert the problem into a continuous systern [33,40-42] and obtain analytic solutions
in the T = 0 limit where one can assume a constant amplitude for the magnetic moments.
However such an approximation breaks down at higher temperatures and when the structure
changes rapidly from layer to layer. A different, more general, method for finding the ground
state of the above Hamiltonian is the iterative energy minimization scheme described below.

We first describe the iterative energy minimization method for the T = 0 case. One
starts with an assumed set of values for the angular position of each layer of spins. In many
cases the spins will lie in a plane parallel to the interfaces (this reduces the demagnetization
energy) and for simplicity we will use this assumption. It is also assumed that all spins
in each layer are equivalent. Due to exchange coupling, the energy of the spins in any
given layer depends.on the orientation and magnitude of the spins in the nearby layers. An
arbitrary layer n, of spins, can be regarded as having an eneigy E, where

E,= Z JnmSn * Sntm ~ gnprnHo « Sy (5}
m=0,%1,£2

or in terms of the angle 8, that the spins in layer » make with the applied field

E,= Z JrmSeSptm COS(Bn -~ 9n+m) — ZnitpSpHo cos (gn)- (6)
m=0,%[,£2

Thus at T = 0 a single variable for each layer, 6,, characterizes the magnetic structure. This
energy is minimized by choosing the angle 8, generated by the minimization condition

dEnf36, = 0. (7
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This procedure can be viewed as rotating the spins in the nth layer to lie paralle! to their
effective field, a process which reduces the layer’s energy. We can then find a configuration
as follows: a different layer is then randomly chosen and the spins in that layer are rotated
to lie in the direction of the local effective field. The process is continued until one has a
self-consistent, stable state where all the spins are aligned with the effective fields produced
by the neighbouring spins. Since the method only minimizes the energy locally, different
initial configurations may lead to different self-consistent final states. The ground state is,
of course, the stable state with the lowest energy for the entire structure,

At finite temperatures, both the direction and thermal averaged magnitude of the spins in
each layer must be specified. In this case the iteration procedure is slightly different. A layer
of spins is first rotated into the direction of the effective field, and then the spin’s thermal
averaged magnitude in that direction is found through the use of the Brillouin function

{Sa} = 8, Bs,(x) 8
where

X = gniinSy HnfkT. ®)
The Brillouin factor is given by
Bs(x) = [(25 + 1)/25Tcoth{(28 + 1)x/2S] — (1/285) coth(x/28). (10)

Here (S,) is the thermal average of the spins in the nth layer in the direction of the effective
field. H), is the effective field acting on layer n. The effective field is now given by

Hn = HO + Z Jnm (Sn-}-m}- (ll)

m=0.11,+2 SnHB

Note that in the effective field the spins in the neighbouring layers are replaced by their
thermal averaged magnitudes. Again the entire operation is iterated through all spins until
a self-consistent state emerges.

Now the ground state is the one with the lowest free energy. At T = 0 the energy is
not simply given by summing over the individual layer energies, i.e.

Etora # ZSnMBSn - H, (12)

since this counts the exchange energy twice. Similarly, for T = 0 one must be careful in
evaluating the free energy to avoid counting the average exchange energy twice. In the
mean-field approximation the partition function for the spins in layer # is given by

Z, = [sinh[(ZS,, + 1)gnitsH, /ZkT]} / sinh[gnin Hy /2kT]. (13)
The total partition function is then
z=[]z.. (14)
n

Finally, the free energy for the entire structure is given by [43]

1
F=-kT Zln Z,— 3 ZgnﬂB(Sn>Hex (15)
n
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where the second term on the right eliminates the ‘double counting’ of the average exchange
energy.

In practice the iteration procedure requires of the order of 1000-100000 iterations per
layer to reach a converged state. It generally takes a larger number of iterations to find
a converged state near a phase transition. Of course, the final state may only be a local
minimum and it is not guaranteed that the true ground state will always be found by this
method. Nonetheless, if one takes a sufficient number of different initial sets of angles, the
method seems to discover all the low-energy stable states.

We note in passing that this mean-field theory is really the simplest possible
approximation that takes into account a layer-by-layer variation spin orientation and thermal
averaged magnitude. Such methods have been used previously in thin-film calculations [44].
Improvements would include Bethe-Peirels—Weiss methods or Monte Carlo techniques.
-However these methods involve significantly larger computational investment.

2.2. Comparison of theoretical and experimental results for bulk superlattices

Among the most interesting of the magnetic superlattice structures are those which involve
some antiferromagnetic coupling. In this case the exchange energy favours some kind
of antiparallel alignment while the Zeeman energy due to an external field favours a
ferromagnetic-like arrangement. As a result, these structures can display a fascinating set
of phase transitions, with the transition temperatures and fields controiled by changing the
layering pattern. We therefore concentrate on superiattices with antiferromagnetic coupling.

One of the ‘simplest’ layered systems with an interesting magnetic structure and a
fascinating dependence on layering pattern is the GdfY superlattice. Although bulk Y is
normally non-magnetic, in the Gd/Y superlattice the Y layers mediate an effective exchange
interaction between neighbouring Gd films. Yafet and co-workers [45, 46] has shown that
this is essentially due to the RKKY interaction. The RKKY interaction is often invoked
for discussions of magnetic impurities in a non-magnetic host. In this case, one magnetic
impurity produces a spin polarized electron cloud around itself. Fhis spin polarized electron
cloud can then interact with a second magnetic centre to produce a long-range exchange
interaction which depends on the distance R between the two magnetic impurities. For
large R and a free electron gas, the RKKY exchange has the functional form

J(R) =~ A[sin(24zR) ]/ (2kzR)’ (16)

where &g is the Fermi wavevector. The key point here is that the exchange interaction is
oscillatory, depending on the distance between impurity spins. For metals the oscillation
period is relatively short, of the order of a few A. Instead of just comsidering two
impurity spins, Yafet considered two planes of impurity spins and showed that the exchange
interaction was still oscillatory. In this case the coupling depends on the distance z between
planes and has the form

J(z) = B[sin{2k¢z)]/2% | (17)

Clearly, the exchange still oscillates as a function of distance and the expected oscillation
period is still only a few A.

The oscillatory behavicur of the exchange as a function of spacer film thickness in
Gd/Y superlattices was beautifully demonstrated in experiments by Kwo et af [7]. Figure 2
shows magnetization as a function of Y thickness for a series of Gd/Y samples. The large
values of magnetization occur for Y thicknesses where the coupling between Gd films is
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Fipure 2. Experimental results on Gd/fY multitayers Figure 3. Schematic spin fiop of Gd/Y- or Fe/Cr-

showing altenation of the zero-field magnetization
(topy and the field required for saturation (bottom)
as a function of thickness of Y. Low magnetizations
and high saturation fields indicate antiferromagnetic
coupling. (After [7]).

type structure. The spins in neighbouring films attempt
to be antiparallel to each other but are canted in the
direction of the applied field. In the high-temperature
configuration the thermal averaged magnitude of the
spins is lower at the edges of the ferromagnetic films,

This results in a smaller canting angie ¢ for the same
applied field.

ferromagnetic, and when the coupling is antiferromagnetic the magnetization is nearly zero,
indicating that the Gd spins in neighbouring films are antiparallel,

Recently 2 series [47] of ferromagnetic/non-magnetic (Fe/Cr [27], Co/Ru [16], Co/Cu
[48]) structures has been studied, where the non-magnetic space layers mediate an effective
exchange between the magnetic layers. These structures were fabricated by a number of
different methods inctuding MBE and sputtering. As in the case of Gd/Y the exchange is
ferromagnetic or antiferromagnetic depending on the thickness of the spacer film. However
in this case the osciliation length is typically of the order of 10-12 A, with some periods
as large as 18-20 A. Much shorter-range osciliations (2-3 A) have also been observed in
carefully prepared samples. Despite the differences in the length scale, coupling in these
systems has also been attributed, at least in part, to REKY-type interactions. A detailed
discussion of the origin of the coupling is beyond the scope of this paper [49-53).

When ferromagnetic films are antiferromagnetically coupled, through a spacer layer for
example, application of a magnetic field produces some interesting results. Becanse of the
competition of interface exchange and Zeeman energies [7,8], the ground state is not a
macroscopic antiferromagnetic state where the ferromagnetic films are strictly antiparallel.
Instead the equilibrium structure resembles a macroscopic spin-flop state which represents
a compromise between exchange and Zeeman energies. The resulting configuration is
illustrated in figure 3. An increase in the external field reduces the canting angle & and
changes the net magnetic moment of the structure. The magnetization is thus very sensitive
to applied fields and also to temperature, which plays a strong role in determining the
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average interlayer exchange energy.

In figure 4 we present theoretical and experimental results for the magnetization as
a function of temperature for GdfY superlattices [54]. We see an unusual temperature
dependence with a2 magnetization that increases as temperature is increased. This can be
readily understood by looking at the exchange coupling of the Gd spins. The Gd spins on the
interior are strongly coupled to each other compared to those on the exterior which are only
weakly coupled on the Y side via the RKKY interaction. When the temperature is increased,
the Gd spins in the interior thus retain a larger thermal averaged magnitude than those on the
exterior since they see a larger effective field. As a result, the interface exchange energy
(which should scale as Ji{Sgi—exterior}2) is rapidly reduced and the competition between
exchange and Zeeman energies now favours a state where the Gd momenis point more
closely along the extemal field. This is automatically included in the iterative calculation
and the result are illustrated schematically in figure 3. Thus even though (Sga} decreases
as the temperature increases, the change in orientation of the Gd spins is sufficiently large
that the magnetization increases. As T continues to increase the {Sgq) begin to decrease
very quickly and the magnetization decreases (more or less as single Gd films). The field
dependence of the magnetization is also striking. Here we have an ordered state which
displays a significant change in magnetization as a function of field. '
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Several other systems have been investigated both experimentally and theoretically.
One such system is composed of alternating ferromagnetic films which couple antiferro-
magnetically at the interfaces (i.e. Fe/Gd or Co/Gd). Such antiferromagnetic coupling is a
reasonably general feature of transition metaljrare earth systems. There are three important
phases in the Fe/Gd system [33]:

(1) The Gd-aligned phase—the structure here has Gd fully aligned with the applied field
and the Fe spins antiparallel to the field. This phase occurs when the net thermal magnetic
moment in the Gd films is much larger than that in the Fe films.

{2) The Fe-aligned phase—here the Fe spins are aligned with the field and the Gd spins
are oppositely oriented. This phase cccurs when the net magnetic moment in the Fe films
is larger than that in the Gd films,

{3) The twisted (or canted) phase—here the spins in each layer make a different angle
with respect to the applied field. In this phase, the spin configuration can vary from
something similar to the spin-flop phase in an antiferromagnet to a configuration similar to
that in a domain wall. This phase occurs typically when the net magnetic moments in the
Fe and Gd films are close to each other. The phases are iltustrated in figure 5.

&d - aligned twisted Fa - allgned

= = =
= =
=0

==

=]

=

==

==

—

Gd
Figure 5. Schematic illustration of phases of Fe/Gd structure,

==, The Fe-aligned state often occurs at higher temperatures where

the thermal averaged magnitude of the Gd is significantly
g H, reduced.

As we have seen, the different phases arise from a competition between Zeeman and
exchange energy. For small magnetic fields the Zeeman energy is less important and the
exchange energy generally favours the aligned states. Clearly the films with the larger
moment will align parallel to the field. This introduces a strong temperature dependence
since the thermal averaged magnetic moment in Gd changes rapidly compared to that of
Fe since the Gd spins see a smaller effective field. For moderate fields both exchange
and Zeeman energy are important. This favours the twisted state. Changes in the layering
pattern can make significant changes in the field~temperature (h—¢) phase diagram since the
balance between exchange and Zeeman energies depends critically on. relative thickness. In
figures 6 and 7 we present theoretical phase diagrams for a Fe/Gd superlattice with a unit
cell of 13 Fe/S Gd and a second diagram for a system with a unit cell of 14 Fe/4 Gd. We
see that the addition of just one layer produces a dramatic shift in equilibrium properties.

The microscopic phases are reflected in such macroscopic measurements as magnetiza-
tion as a function of temperature and static susceptibility, In particular the twisted phase
displays a very large susceptibility, The reason for this is clear. Susceptibility measures the
ability of the spin configuration to change due to an external field. In the aligned state only
the magnitudes can change. In the twisted state both the magnitudes and the orientations
of the spin can change and this leads to a significantly enhanced susceptibility. Note also
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Figure 8. Magnetization as a function of applied field for (@) Fe/Gd superlattice (theory) and
() CofGd superlattice (experiment). in the theoretical plot ¢ is the reduced temperature and &
is the reduced magnetic field as in figure 6. (Theory after {34] and experiment after [2].)

that the behaviour of the net moment as function of temperature is very different for the

two samples.

In figure 8 we compare theoretical results [34] for M versus applied field for an Fe/Gd
superlattice with experimental results for a Co/Gd superlattice [2]. (The Co/Gd superlattice
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has essentially the same physics as the Fe/Gd structure.) We see good qualitative agreement
between the experiment and theory and can clearly distinguish phase changes from aligned
states ( Syt nearly constant) to twisted states (S changing rapidly with field).

Theoretical results for the magnetic phase diagram of the Fe/Gd system were presented
in [33 and 34]. In addition it was shown that the critical field necessary to cause
a transition from the Gd-aligned phase to the twisted phase at a fixed temperature
decreased significantly as the thickness of the Gd layer was increased. Recently systematic
experimental explorations of the Fe/Gd system have been initiated by several different groups
[18-24,55,56]. These studies have confirmed the magnetic phase diagram {as can be seen
in figure 9) and the dependence of the critical field on the thickness of the layers, and have
verified that the susceptibility is largest in the twisted state. An interesting feature which
emerges from these studies, some of which made direct comparisons between experiment
and theory, is that the Gd films in the superlattices behave as if their magnetizations are
reduced by 20-25% from bulk Gd. The reason for this is not yet known.
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Figure 9. A comparison of experiment (4} and theory
(full curve) for the magnetic phase diagram of Fe/Gd.
The calculation used a value for the Gd magnetization
which was reduced by about 20% from that of bulk Gd.
(After [56].)
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Figure 10. Experimental (filled circles) and theoretical
(full curves) Mbssbauer results for Fe/Gd, X is the
ratio of the intensities of two Mdssbauer lines seen in
the typical sextuplet spectrum for Fe. Ina45° geometry
X can be related to the angle that the Fe spins make

with the external field, X = 4 indicates that the Fe
spins are either parallel or antiparailel to the applied
field. X = 1.33 indicates the Fe spins are perpendicular
to the applied field. The temperatures comrespond to the
vertical lines in figure 9. {After [56].)

An experimental group in France used a clever variation of Mossbauer spectroscopy to
obtain the microscopic orientation of the Fe spins with respect to the external field [24].
In a typical Mossbauer spectrum for BCC Fe one sees six peaks. These peaks occur with
relative intensities 3:X:1:1:X:3. The factor X depends on the angle between the y-ray
direction and the direction of the magnetization in Fe. Using a 45° incident geometry, X
may be related to the angle between the Fe moments and the applied field. One can show
that in this geometry X = 4 indicates that the Fe moments are either parallel or antiparallel
to the applied field. At X = 1.33 Fe is perpendicular to the applied field. A comparison of
experimental and theoretical results for X as a function of magnetic field has recently been
reported for an Fe(42 A)/Gd(84 A) superlattice and typical results are shown in figure 10,
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Here for T = 100 K and at low field one sees that X ~ 4 indicating that the Fe moments
are antiparallel to the applied field. As the field is increased the phase transition to the
twisted state occurs around H = 2.5 kG and the Fe moments begin to tum toward the
direction of the applied field. At H = 8.5 kG X = 1.45 and the Fe moments are practically
perpendicular to the field. The behaviour at T = 240 K is significantly different. In this
case X is generally near four and the Fe moments are nearly aligned with the external field
over the entire range of applied field. The agreement between theory and experiment is
quite good indicating that this system is reasonably well understood.

We describe one final bulk system, a Gd/Dy supertattice, in detail. Bulk Dy is a very
interesting material which develops a helical magnetic order below 178 K [57]. A second
phase transition occurs in bulk Dy at around 85 K when the magnetic ordering changes
to a ferromagnetic state. In thin films the phase transition to the ferromagnetic state is
suppressed [28,29]. As might be expected, the Dy behaviour in the superlattice structure is
also significantly altered from its behaviour in the bulk.

In figure 11 we show the experimental M(T) curves for four different superlattice
structures. Here we see that as the temperature is lowered, the Gd slabs first become
ferromagnetically ordered at T.. The values of T, are slightly depressed compared to butk
Gd where T; = 292 K. We find T, = 250 K for superlattices with five Gd layers in a unit
cell and T, = 290 K for superlattices with ten Gd layers in a unit cell. This decrease is due
to finite-size effects and is in good agreement with earlier results. Upon further reduction
of temperature a local maximum in M(T") occurs followed by a minimum, which occurs
at a temperature between 100 K and 200 K depending on the specific superlattice bilayer
period. Finally, M (T) increases as the temperature is lowered toward 10 K. Since bulk Dy
develops a helical order at Ty = 178 K, the minimum followed by the sharp rise of M(T)
in the Gd/Dy superlattices is undoubtedly a consequence of the complex spin structures of
the Dy slabs and the Gd siabs. We note that for the 5 Gd/5 Dy and 10 Gd/5 Dy samples,
one recovers a very large fraction of M,(0) with a field of oniy 0.1 kOe at 10 K, and thus
the spin structure must be very nearly ferromagnetic. However in the 5 Gd/10 Dy and
10 Gd/10 Dy samples, where the thickness of the Dy slabs is doubled, the magnetization
at 0.1 kQe is significantly less than M(0). Neutron scattering results [26] at 80 K confirm
this picture. For the 5 Gdf5 Dy and 10 Gd/5 Dy samples one sees a primary magnetic
periadicity of the chemical unit cell. This is consistent with a ferromagnetic state. For the
5 Gd/10 Dy and 10 Gd/10 Dy samples, one sees a primary periodicity associated with a
doubled magnetic unit cell. In every case there is a doubled unit cell at the minimum in
the magnetization. This is consistent with an alternating helical state where the doubled
unit cell containg Dy films which show opposite helicities in their magnetic structure. The
alternating helicity state is described in more detail later,

In order to describe the helical ordering in Dy, one must include both nearest-layer and
next-nearest-layer exchange interactions, A; and A; respectively [57). As is well known
the tum angle ¢ of a bulk helical structure is given by the equation cos & = A /{—4A4).
In both bulk Dy and Dy films, this turn angle varies with temperature. As is common, we
assume that this variation can be described by a temperature-dependent value for Az [57).
The resulting turn angles are remarkably close (within a few percent) to the butk values for
temperatures above the bulk phase transition [58]. Earlier work has shown that the bulk
phase transition to a ferromagnetic state is suppressed in thin Dy films, and our assumptions
for the superlattice values are consistent with this. The assumed values for the turn angle
as a function of temperature are shown in figure 12 along with the values known for bulk
Dy samples. The same variation of A, with temperature is used for all four structures
considered here.
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For simplicity, anisotropy is neglected. This probably results in some differences
between theory and experiment, particularly in the details of the magnetic structure. For
example this might cause the structure to be asymmetric about the applied field as discussed
earlier in superlattices with antiferromagnets [39]. However, as we will see, all the major
features of the magnetization curves seem to be reproduced properly, so this is probably
not too severe an approximation.

The mean-field iterative method described above is used to find the ground state structure
for this system. Depending on the initial set of angles chosen, a variety of final stable states
can emerge. These include a ferromagnetic phase where all spins line up along the external
field, an altemating-helical phase (if the helicity is positive in one Dy film it is negative
in the next Dy film), a fan phase and an ‘antiferromagnetic phase’. Typical structures for
some of these phases are illustrated in figure 13.

The alternating-helicity state is particularly interesting in that the magnetic unit cell is
twice the length of the chemical unit cell. This alternation of helicity generally allows the
Gd spins to lie near the direction of the applied field. In contrast, a continuous-helicity state,
where the helicity in each Dy film has the same sign, would result in Gd spins, on average,
having no particular orientation with respect to the field. Thus the alternating-helicity state
produces a significant gain in Zeeman energy. Since the helicity within a single Dy film
is maintained there is also not much cost in exchange energy. This is in contrast to a fan
phase where the helicity within a film is reversed. The existence of the altermating-helicity
state is a dramatic example of a collective superlattice effect.

The theoretical results for M (T} are presented in figure 14. The comparison between
experiment and theory is really quite good with a slight exception for the 10/10 structure.
We see from the theoretical magnetization results that the alternating-helicity phase plays
a very important role. As the temperature increases the magnetization in this phase first
shows a rapid decrease and then an increase. This reflects, in part, the change in tun
angle as a function of temperature. At the minimum in the magnetization the Gd spins in



Magnetic multilayers

Allernating
Helicity Pnase
=140 K

Fan Puase  Antl

By Spinxs f
Tx140 K wIromagnatic
. T=100K

- Hellchy

Oy Spins
+ Hellzlty

ae Spins

Aﬁn.

3741

Figure 13, llluswation of the alternating-helicity

Applied Field phase, the fan phase and the antiferromagnetic phase
— in Gd/Dy superlattices. (After {25].)
5Gd/ 10 Dy 5Gd/ 5Dy
ST Ak meticty | Antiterre- ° L.
sl{-g
Alt, erra-
o magnetic 5- -\ Heficity magaetic
= Fa: E 47 Ferro-
—5 q - \ E magnetic
= 3 'E 37
& 24 g ]
= 1 = 2
1 1
0 . . g t— :
0 100 200 30a 4] 10¢ 200 300
T & T (K)
10 Ga / 10 Dy 10 Gd/ 5Dy
ST AL Heticity Autiterra- 8 L
mlgne c . Alt. .
4 F:n ' 5- -\ Helicity mcargr:etin
g } ' g 4
g 3 ° £ ] rerre.. Figure 14. Theoretical resuits for
3 & 2 magnetic magnetization as a function of tem-
a 24 2 ] perature for Gd/Dy superlattices as
= = shown in figure 11. The solid lines
17 17 show the ground state. The fan
0 phase, where shown, is stable but
e o oo 200 400 0 100 200 4qa exists at a higher energy. (After
T | T (K} [251)

neighbouring films are nearly antiparallel to each other. By changing the number of Dy
layers one also changes the net angle between the Gd spins in neighbouring layers and as
2 result the minimum in M (T) occurs at a different temperature. Here we see that the
minimurn is shifted by about 100 K by changing the number of Dy layers from five to ten.

2.3, Surface phase transition

‘We now tum to the influence of the outermost surfaces of the magnetic structure of a finite
superlattice. The surface layer plays a special role in the magnetic structure simply because



3742 R E Camley and R L Stamps

it is exchange coupled to other spins on only one side. Thus in the competition between
exchange and Zeeman energies, the influence of the exchange energy is reduced and it is
easier for an external field to direct the surface spins. As the outermost layer of spins tries
to tum toward the field direction, the remaining fayers must adjust their orientations as well.
These surface-induced phase transitions can occur at magnetic field strengths well below
that required for the equivalent bulk phase transition [59,60]. Also the reconstructed state
can have surprisingly large penetration depths into the bulk of the superlattice.

As a first example of a surface phase transition in a superlattice we consider a finite
Fe/Cr- or GdfY-type structure. We assume that the temperature is low enough that all spins
have a thermal averaged moment equal to their maximum value. Furthermore we assume
that the exchange coupling between atomic layers is sufficiently strong that the spins within
a film are rigidly coupled together. These assumptions are reasonable for Fe/Cr or Co/Ru
superlattices at room temperature.

For in infinitely extended Fe/Cr-type structure in an external field one expects a canted
configuration as discussed earlier, From energy considerations, it is easy to show that the
uniform canting angle is given by the equation

coswg = HoM /4T (18)

where M is the net magnetic moment of a film and J is the interface exchange energy. In
a finite multilayer, however, this uniformly canted state is not stable [60]. As mentioned
above, the reason for this is that the outer layers of the finite structure experience only half
the exchange coupling of the interior layers and thus are easier to tumn toward the applied
field.

Stable ground state configurations for finite Fe/Cr type muitilayers have been found
[60] using the numerical method outlined above. These states are compared to the uniform
canting state in figure 15. The structure in figure 15(%), the low-field case, is quite complex.
The outermost spins are twisted into the direction of the field as expected, but the spins
of the second layer are actually turned farther away from the field than they would be in
the bulk configuration. This alternation continues as one progresses into the bulk of the
superlattice, but the amplitude of the deviation decreases with increasing distance from the
surface. The main difference between the configurations of figure 15(b) and that found in
figure 15(c) is that there is no alternation in the high-field configuration of figure 15{c).

The surface twist states illustrated in figure 15(b) and (¢} reduce the energy of the
structure as compared to the uniform canting state by lowering the Zeeman energy. (As a
result the surface twisted states have a slightly higher magnetization than does the uniformly
canted state.) However the twist also results in a small increase of exchange energy. The
resulting structure is as usual a compromise between exchange and Zeeman energy. It
is worthwhile to compare these non-uniform canted structure discussed here to the very
different case of non-uniform canting found in a domain wall. For example, the width
of a domain wall in a ferromagnet is governed by the competition between the exchange
energy and the anisotropy energy. The exchange energy can be minimized by spreading the
canting out over many layers of spins and thus favours a very extended wall. In contrast,
the anisotropy energy is minimized when spins point in the easy direction, thus favouring
a narrow wall. In the surface-twist problem the competition is between exchange and
Zeeman energies, and there is also the additional freedom of having mwo sublattices. This
allows new kinds of state to occur when minimizing the total energy. The alternating spin
configuration seen in figure 15(), for example, has the exchange energy between layers
of spins alternately increase and decrease as one moves through the multilayer. This extra
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Figure 15. Examples of possible configurations for a
multilayer composed of antiferromagnetically coupled
ferromaganetic thin films. The magnetization of each
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in (&) and (c) show the ‘bulk’ configuration for these
cases. Note that for (&) the outermost spins are turned
into the direction of the field, but that the next layer has
the spins tuned away from the field when compared to
the bulk configuration. (Afier [60].)
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Figure 16. Results of the variational calcufation for
the penetration length L as a function of applied: field.
The full curves represent the results of the variational
caleulations and the filled circles are the equivalent
results from the numerical calculation. Note the rapid
increase in L at both high and low fields. (After [60].)

degree of extra freedom allows the width of the non-uniform canting region to vary in an
interesting manner as a function of applied field. At low fields the non-uniform region is
very large; for moderate fields it is quite small and then for larger fields the width of the
non-uniform regions is again large,

A variational calculation [60] gives a simple result for the width of the non-uniform
canting region. We define a dimensionless measure of the applied field as

h=HM/\J|. (19)

The length of the non-uniform surface twist is then given approximately by the expression

12
L=14 F_l

where L is the number of films involved in the surface twist. This result is only valid for
small #. A comparison of the variational results for L with the results carried out within
the iterative model discussed above is presented in figure 16.

(20)
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A second system which displays a surface phase transition is a finite Fe/Gd superlattice.
In this case the surface phase transition depends on the nature of the outermost film [59].
We consider an Fe/Gd system constructed so that at low temperatures and fields the system
is in a Gd-aligned phase. If the outermost film is Fe then increasing the field causes a phase
transition from the Gd-aligned state to a surface-twisted state. This transition nucleates at
the surface and occurs at a field which is about five times lower than that required for the
bulk transition. In contrast, if the outermost film is Gd the phase transition from the aligned
phase to the twisted phase begins in the interior of the sample.

It is easy to understand why the structure with Fe on the outside should have a surface
phase transition. In the Gd-aligned phase the Gd spins point along the external field and
the Fe spins are antiparallel to the extemal field. Fe spins in the interior are strongly held
antiparallel to the external field by the antiferromagnetic coupling to the Gd spins on both
sides of the Fe film. In contrast, Fe spins at the surface are not as strongly fixed since there
are Gd spins on only one side of the Fe film. As a result, as the external field increases
from zero, those Fe spins in the outermost layer are the first to turn toward the direction of
the applied field. Thus the phase transition nucleates at the surface and occurs at fairly low
values of field. On the other hand, if the outermost film is composed of Gd, the situation is
very different. With Gd on the outside, then the spins in the outermost film are parallel with
the external applied field in the Gd-aligned phase. Any increase in the external field tends
to stabilize these outer spins in the direction of the field. Therefore, the phase transition in
this case is essentially a bulk phenomenon, and, in fact, for thin films the phase transition
can actually be somewhat suppressed.

An analogous phenomenon occurs in the transition from the Fe-aligned phase to the
canted phase. In the Fe-aligned phase, the Gd spins are antiparalle! to the external field.
As a result if the outer layer is composed of Gd, then the phase transition nucleates at the
surface. On the other hand, if Fe is on the outside, then the phase transition nucleates in
the interior of the crystal, This phase transition js thus essentially a bulk phenomenon and
so occurs near the bulk value.
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transitions in a [13 Fe/5 Gd)10/13 Fe superlaitice. 4 and
t are unitless measures of the extemal magnetic field
and temperature as described in figure 6. The dotted
curve represents the transition to the twisted phase in
an infinite Fe/Gd superlattice. {After [59).)

superlattice make with respect to the applied field as
a function of position for a ten-unit cell 13 Fe/5 Gd
superlattice.  As the external field & is increased
the reconstructed stale deviates significantly from the
aligned state, (Afier [59].)

The phase diagram for the finite Fe/Gd superlattice can be readily obtained by use of
the iterative energy minimization method described above. The results are presented in
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figure 17. Here we consider a [13 layer Fe/5 layer Gd]y5/13 layer Fe superlattice. We see
that the aligned-Gd state now occupies only a small region of the phase diagram and that
the surface-twist state occurs at much lower fields than is found in the bulk system. The
structure of the reconstructed state is presented in figure 18. We see that even for fields well
below that necessary to cause the bulk transition to the twisted state (h = 0.032) there are
large deviations from the aligned state structure. The penetration depth of surface deviation
is of the order of 3—4 unit cells which can be a length of a few hundred Angstroms.

In this section we have shown that a position-dependent energy minimization scheme
which takes into account both the thermal averaged magnitude of the magnetic moments
and their orientation can give a good account of the magnetic structure for many different
magnetic multilayer systems. The general behaviour of magnetic multilayers as a functions
of both temperature and applied field can be straightforwardly predicted. This provides an
understanding of both macroscopic measurements such as M (T') and static susceptibility as
well as microscopic measurements such as neutron scattering and Mdssbauer studies.

The method developed here and variations of this method [61] have also been
used to study a number of other multilayer systems. These include magnetic struc-
tures in quasi-periodic superlattices [62], antiferromagnetic superiattices [38], ferromag-
netic/antiferromagnetic multilayers [63] and thin Gd films on Fe substrates [32]. The mag-
netic structure as a function of applied field can also be used to calculate magnetoresistance
[55]. Finally, we note that a correct ground state is necessary for calculations of dynamic
properties such as spin wave modes. This will be explored further in the next section.

3. Spin-wave excitations in magnetic multilayers

3.1. Introduction

As we have seen, much of the most interesting physics that occurs in magnetic multilayers is
due to the coupling across interfaces and the effects of having a surface. Unfortunately the
nature and strength of interactions across an interface are difficult to measure directly.
Even with techniques such as SPLEED and neutron scattering [64,65], it is difficult to
obtain unambiguous information on the magnetic structure of surfaces and interfaces.
Measurements of the static magnetization of magnetic multilayers are usually limited to
detecting the averaged magnetic moment from a relatively large volume of sample. Another
problem, for example, is that ferromagnetic interlayer exchange coupling cannot always be
inferred from static magnetization measurements.

One method of investigating surface and interface magnetism, which has proven useful
in studies of ferromagnetic films and multilayers, is to probe the spin-wave excitations of
a magnetic system [66,67]). In a spin wave the magnetic moments at each site precess
about their individual equilibrium directions. Since the spins are coupled with one another
through exchange and dipolar interactions, spin-wave excitations are the eigenmodes of the
magnetic system and are characterized by frequency and wavelength, Thus the frequency of
a spin wave may depend quite sensitively on the exchange coupling between spins as well as
other effective fields caused by, for example, anisotropies and magnetoelastic effects. These
interactions will not only affect the frequency of precession but also the relative phase of
precession between spins at neighbouring lattice sites,

In ferromagnetic systems such as Fe and Co the lowest spin-wave frequencies are
typically of the order of 10 GHz. These are long-wavelength excitations and can be studied
using ferromagnetic resonance and Brillouin light scattering techniques [68-71]. Higher
energy excitations can be observed by magnetic neutron scattering [72,73]. Spin-wave
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frequencies in antiferromagnetic compounds are typically much higher, existing at several
hundred GHz, and thus also influence the optical properties in the infrared region [74-76].
Excitations in antiferromagnets can be observed with Raman scattering as well as neutron
gcattering [67,73]. In magnetic muitilayers, the energies of long-wavelength spin-wave
excitations will also range from a few GHz to several hundred GHz depending on the
choice of constituent materials. 'We note however, that one of the fascinating aspects of
spin waves in magnetic multilayers is that their energies can be made to vary over a fairly
large range simply by changing the relative thicknesses of the constituent materials. Finally,
the presence of surfaces and imterfaces can lead to a localization of spin-wave modes to
the boundaries between materials and to the outer layers of a finite multilayer {77]. These
localized modes thus make ideal probes for examining surface and interface conditions [78].

Finally, spin-wave excitations are also important for thermodynamic properties [79, 80).
Spin waves are bosons whose number depends on the temperature of the system. The
presence of spin-wave excitations thus reduce the net magnetic moment along the direction
of magnetization. In a superlattice structure, gaps in the spin-wave spectrum appear due to
the periodicity of the system. Clearly these can play an important role in the thermodynamic
behaviour. There are several works using linear spin-wave theory to estimate M(T) at
low temperatures in multilayer and superlattice structures [81-84]. Non-linear spin-wave
interactions are also interesting and become important in determining M(T) at higher
temperatures [85,86]. Non-linear interactions also lead to unique high-power resonance
behaviour and non-linear optical properties [87, 88).

3.1.1. General features of excitations in multilayers. Before discussing the details of spin
waves in magnetic multilayers, we first review in very general terms some of the fundamental
concepts of superlattice and multilayer excitations. We begin by examining the modes of a
system of coupled oscillators. First imagine a system of 2N uncoupled pendula, We assume
that the pendula are identical so that the frequency of small oscillations for each pendufum
is ewp. In this system, the oscillations of each pendulum are compietely independent of each
other and so there are no cormelations between the motions of any of the pendula. If we
were to drive the motion of the system by applying some oscillating extemnal force, the only
strong response we would observe would occur when the driving frequency was equal to
.

Suppose now that we couple each pendulum to one of its nearest neighbours using
springs as shown in figure 19(2). The strength of each spring in characterized by a constant
C1. We can now think of our system of 2N pendula as a system of N sets of two coupled
pendula. The motions of the individual pendula within each coupled pair are now strongly
correlated. This results in two normal modes for each pair with each motion corresponding
to a different frequency of oscillation. These motions are sketched in figure 19(b) and
(¢). The motion in (&) is characterized by the two pendula oscillating in phase with one
another and the motion in {¢) is characterized by the two pendula oscillating exactly 180°
out of phase with one another. The frequency of the motion in (b) will be cwp, whereas the
frequency of the motion in (¢} wiill be wp + A which is larger than wg, due to the added
energy involved in stretching and compressing the coupling spring. Since the relative
motions between pendula pairs are still completely uncorrelated, the system of 2N pendula
would show a response to a driving force at only two frequencies: wyp and e + A.

If we add springs of spring constants C; between all neighbouring pendula we than have
a system of 2N coupled oscillators. This results in 2N different possible modes, each being
characterized by a frequency and also by a relative phase angle between the oscillations of
neighbouring pendula. The system will show a response to a driving force at 2N possible
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Figure 19. (a) Two pendula coupled by a spring. The Figure 20. (a) A ‘superiattice’ of pendula where
two possible motions are (b) an in-phase oscillation and  every pendulum is coupled to its nearest meighbours
{¢}) an out-of-phase oscillation. via springs. The spring constants alternate between
€y and Ca. Viewed as pairs of pendula coupled
by C springs, the lowest-frequency motions are in-
phase oscillations of the pendula pairs. Since there
are two types of intermal motion of the pendula pairs,
the longest-wavelength motions of the entite system

appears as in (&) and (c).

frequencies. The relative phase angle between oscillations defines a wavelength. The
mode where all of the pendula oscillate in phase with one another has frequency wp and a
correspending wavelength of infinity.

A superlattice or multilayer is constructed in a slightly different way. Consider again
the system of N coupled pendula pairs. Recall that each pair of pendula is internally
coupled by a spring with spring constant C;. Let us now couple each pair with both of
its neighbours by a different spring constant C» which we will assume is much smaller
than C;. This construction is shown schematicaily in figure 20{g). There will now be
two general classes of excitation corresponding to the two modes of oscillation of each
pendula pair. The low-frequency excitations are composed of the in-phase pendula pair
oscillations. A long-wavelength exampie is sketched in figure 20(b}. The different modes
corresponding to different phase angles between the oscillations of neighbouring pendula
pairs form a band of excitations. Similarly there is a band of N modes due to the out-of-
phase pendula pair oscillations. A long-wavelength excitation for this band is sketched in
figure 20(c). The frequencies of these modes are in general higher than those of the other
band by approximately A.

The superlattice described above is constructed out of sets of coupled pendula. The
number of bands depends on the number of ‘internal’ motions of each set of coupled
pendula. Thus, if we had built the superlattice out of N/2 sets of four coupled pendula, we

would have four bands of modes. There would be N/2 modes in each band.
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A well known example of excitations in a periodic system is the allowed energy states
of the one-dimensional Kronig-Penney model [89]. This model consists of finite potential
wells arranged periodically in a row. Standing-wave solutions of an electron wave function
exist inside each well, and exponentially decaying waves are allowed in the regions between
wells. The resulting collective excitations are Bloch wave states and are the excitations in the
individual wells modulated by a function that has the periodicity of the lattice. In terms of
our pendula analogy, the modes of a coupled pendula pair correspond to the standing-wave
solutions in the potential welis. The springs C; provide a coupling mechanism corresponding
to the exponentially decaying waves between wells. The Bloch wavevector is proportional
to the inverse of a wavelength that specifies the relative phase between the standing-wave
functions in neighbouring potential wells.

3.1.2. Spin-wave excitation in thin films. In order to discuss spin-wave excitations in
magnetic multilayers in the light of the coupled-pendula analogy presented above, we must
first identify the “pendulum’ components for a magnetic multilayer. These are simply the
allowed spin-wave excitations of a magnetic film. The coupling ‘springs’ between the spin-
wave excitations of the individual films can be due to both dipolar fieids and exchange
coupling between the films. The first part of this section is concerned with how the spin-
wave excitations of each film of a magnetic multilayer couple together through purely
dipolar interactions. The effects of exchange coupling will be considered later.

We now discuss long-wavelength low-energy excitations that can be detected using
ferromagnetic resonance and Brillouin light scattering techniques. For sufficiently long
wavelengths, the dynamic magnetic properties of the material can be described by a position-
independent magnetic susceptibility x of the form

m=x-h (21)

where ™t is a time and spatially varying component of the magnetization and k is a time
and spatially varying component of the magnetic dipolar field. Furthermore, we assume
that the wavelengths of the excitations are still skort enough that

Qr/Ae » w. (22}

In this limit, the magnetic fields in Maxwell’s equations are uncoupled from electric fields.
This is called the magnetostatic limit. The wavelengths A for which both the approximations
of equations (21) and (22) hold are typically from 107> to 10~7 m for ferromagnets.

The description of spin waves in this limit proceeds as follows. First an expression for
X is found by solving the Landau-Liftschitz equations of motion. These equations have the
form

(d/dr)ym = ym x (h+ Hey) (23)

where H.y is an effective field containing external applied fields, effective anisotropy fields
and exchange fields. y is the gyromagnetic ratio. For a ferromagnet without anisotropies,
x can be shown to have the well known form [90]

_ Ms Hg iw/y]
x= Hi - (0/y)? [—iw/V Ho ’ 29

where Hp is an external applied field and M is the saturation magnetization. Note that
exchange fields do not appear for a simple ferromagnet. This is only true for long-
wavelength excitations where locally the spins are parallel. Thus the exchange field produces
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no contribution to the torques experienced by a spin. This is not frue for spin configurations
where the spin orientations vary from layer to layer as in many of the structures discussed
in section 2.

The constitutive relation between m and k given by equation (21) allows us to write
the magnetostatic form of Maxwell’s equations solely in terms of h:

Axh=0 (25)
CAb=A-(1+47x)h=0. (26)

Equation (25} allows us to define a magnetic potential ¢ such that

h=~Ad. @7
Using this in equation (26} gives [91]

[2/82% + (1 + 4rx.:) (8%/8y + 82/05%) |0 = 0. 28)
The solutions to this equation represent travelling waves and are assumed to have the form

¢ = goexpli(qy + @) — w1)]. (29)

The vectors gy and @) are the wave and position vectors parallel to the surfaces. In a

film geometry, the solutions also have to obey the boundary conditions at the surfaces

which follow from Maxwell’s equations. These require that the normal components of

b = (1 + 47 x)h and the tangential components of k be continuous across the surfaces.
The solution of equation (28) has the form

¢ = [A exp(iky) + B exp(—iky)] exp(iq) - @) (30)

where the surface normal is taken to be in the y direction. Oniy discrete values of & will
be allowed by the boundary conditions. For real &, these solutions describe guided waves
which propagate in the film. These kinds of wave are called bulk or volume modes.

A second type of solution occurs when £ is imaginary. The wave will then have its
greatest amplitude near the surfaces of the film and its smallest amplitude in the bulk of
the film. These kinds of waves are called surface modes. The amplitude of the field from
a surface mode is relatively large outside the film in comparison to that from a bulk mode
which is localized inside the film. One can show that the fields of a surface mode extend
a characteristic distance 1/)q| outside the film,

Application of the boundary conditions resuits in an implicit dispersion relation relating
gy and w:

@3+ 2q1k(1 + 47 xux) cOURL) — K2(1 +Amxes)” — 167%2x%, =0 (31)
with
) 1/2 .
k=ifql +q2/1 +dnxa)] . 32)

Solutions of this relation are shown in figure 21. The frequencies are shown as functions
of the wavevector | where g is in the plane of the film. The lower set of modes are
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Figure 21. Dipolar magnetostatic spin waves
for a ferromagnetic film. The frequencies are
shown as functions of both ¢y and 4. where ¢
is the in-plane component of the wavevector.
The applied field is in the z direction. The
bulk modes exist in the frequency region
between g = yHy and Qg = y[Ho(Ho +
4 M)V, A surface mode exists between
g and §25 = y{(Ho + 27 M) for some
directions of propagation. (After [92].)

all bulk modes and the highest-frequency mode is a surface mode. The surface mode has
the interesting property that it propagates only for a restricted set of directions with respect
to the applied field. For propagation along the x direction, the surface mode is localized
to top side of the film, while for propagation along the —x direction, the surface mode is
localized to the bottom side of the film,

For propagation perpendicular to the applied field direction on a semi-infinite
ferromagnetic, the results take simple forms. The surface wave (cften referred to as the
Damon—Eshbach mode [92]) has frequency

w; = 3v(Ho + B) , (33)

where B is Ho + 4n M,. The bulk modes are degenerate for this propagation direction with
frequency

wy = v+ HoB. ‘ (34)

3.2. Spin waves in superlattices

Consider a superlattice constructed by alternating magnetic films with non-magnetic films,
The spin-wave modes of each magnetic film can then couple across the non-magnetic layers
to form collective spin-wave excitations of the superlattice. The strength of the coupling
depends on the amplitude of the fields in the non-magnetic layers. However, as we have
seen from the previous section, of all the allowed modes of a film the surface mode has
the largest field amplitudes outside the film. Thus the strongest coupling due to dipolar
interactions occurs between the surface waves of individual magnetic films.

The magnetic potential ¢ of a possible superlattice mode is sketched in figure 22 a5 a
function of position in the superiattice. It is composed of surface waves on the individual
films, but its amplitude is moduiated by a periodic ‘envelope’ function. Since the envelope
function is periodic, the superlattice mode shown here is a collective ‘bulk’ wave even
though it is composed of surface waves on the individual films. Later we will also see
that collective modes can exist on semi-infinite superlattices and finite multilayers and are
localized to the outermost layers of a structure as ‘surface’ modes.

3.2.1. Transfer matrix description. A simple but powerful technique can be used to describe
superlattice excitations. This technique is known as the transfer matrix method {93, 94). The
method is basically as follows. The amplitudes of the fields at an interface between two
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Figure 22. Amplitude of the scalar magnetic potential  Figure 23. Muhilayer and superlattice geometry. The
as a function of position in a magnetic superlattice for  applied field is in the z direction and an in-plane
a bulk mode. The excitations in each magnetic film are  wavevector g is defined in the xz plane. The thickness
surface modes and localized to one surface of the film.  of each magnetic film is 4, and the thickness of each
The collective excitation is oscillatory and is therefore  non-magnetic flm is 4.

& bulk mode of the superlattice. (After [95].)

.

films are written in terms of the amplitudes of the fields at the neighbouring interface. This
process is continued until the amplitudes of the fields at one side of a unit cell of the
superlattice are related to the amplitudes of the fields at the other side of the unit cell. This
refationship is conveniently written in matrix form and is called the tansfer matrix. For
an infinitely extended superlattice, Bloch’s theorem can be applied and the eigenvalues of
the allowed superlattice excitations found. Alternatively, repeated application of this matrix
can be used to relate the fields at one end of a finite multilayer to the fields at the other end
of a multilayer, and find the allowed eigenvalues.

First we describe the geometry of the superlattice shown in figure 23. The thickness of
each magnetic film is 4, and the thickness of each non-magnetic film is d». The axis of the
superlattice is set in the y direction and the films are indexed by the integer . The length
of a unit cell is defined as

L =d +ds.
We begin the calculation by defining the form of the waves which can exist in the

superlattice. The waves which can exist in the magnetic film are defined similarly to
equation (30):

pmagnetic _ [An expla(y — nL ~ dy)] + B, exp[—a(y — nL)]} expli(g) - @y ~ot)]  (35)

fornl <y < nl + d,. The decay constant & is assumed to be real and is determined by
solving equation (28). The solution is simply @ = ik where & is given in equation (32),
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The waves in the non-magnetic films are defined similarly:
non-magnetic [C,1 exp{gyly—(n+ 1L} + D, exP[—'qH (y—nl—d )]] expli{qy - —cut)]
(36}
for nL +d; <y < (n+ 1)L. Here the decay constant has already been determined by
Maxwell’s equations and is equal to the magnitude of the parallel wavevector.
We now apply the electromagnetic boundary conditions at y = nL+4d; and y = (41 L.
Continuity of the tangential A components leads to
An + By exp(—ad)) = C,exp(—gydz) + Dy (37
and
Ape1exp(—ad;) + Buy = Cy + Dy exp(—qyd). (38)
Continuity of the normal components of b results in
Aphs + Bid_exp(—ad)) =g (C,, exp(—qydz) — D,.) (39)
and
Ansiryexp(—ad;) + Bapih- =q) [C,, -D, cxp(—q"dz)]. {40)
In the last two equations, we have used
hi = g Xy £ (1 + x)- @1)

Qur goal is to have two equations relating A,, B, and A,i1, Bpy. We do this by
eliminating C,, and D, from the above four equations. Using the definitions

Fix =Ai+q (42}
and

1
T= -

Pyl =Ty Ty
% edd‘ [E+l"++ .- — E_F+_ 1"_+] 2 COSh(Q||d2)F__F_+
—2 cosh(gyda)T 1. T4 e [E Ty I ~ BT Ty ]
(43)

where E, = exp(qd,) and E.. = exp(—g42) , the result can be put in the compact form

An+l ) T ( Ap
= . 44
(Bn+l Bn . “4
The matrix T in equation (43) is called the transfer matrix. This matrix has the property
that its determinant is equal to unity, which is a statement of energy conservation within

the superlattice. In the following sections we will use this matrix to examine the bulk and
surface spin-wave modes of a magnetic superlattice.
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3.2.2. Buik spin waves in superlattices. We first illustrate the use of the transfer matrix
method by finding the dispersion relation of bulk spin waves in a superiattice. This is done
by requiring the amplitudes A, and B, to have the periodicity of the superlattice structure.
This is a statement of Bloch’s theorem for a periodic structure:

Anel . Ay
( Bn: : ) =exp(iQL) ( B,,) (45)

where {7 is the Bloch wavevector for the collective excitation.
Using equation (44} together with equation (45), we can write

[T - exp(iQL)l] ( g:) =0 (46)

and equivalently,
[T"‘ - exp(—-iQL)l] (g") =0 @7n

where T~! is the inverse of T. These two equations can be combined to give
cos(@QL) = H{T+T ) =1uT (48)

where tr stands for the trace. This expression gives an implicit dispersion relation for bulk
spin waves in the superlattice structure,
Equation (48) can be written in the form

cos(QL) = {[a} +0*(1 + X0p)" + 4235 )/2010(1 + x3y) } sinh({edh) sinh{gys)
+ cosh{ad; ) cosh{gdz). (49)

This dispersion has the same form as that obtained in the standard electronic Kronig—Penney
model. As in the electronic problem, gaps appear in the spin-wave spectrum due to the
periodicity of the structure. Explicit results for surface and bulk spin waves in superlattices
are discussed in the next section.

3.2.3. Surface spin waves in superlattices. As we saw in section 3.1.2, the presence of
surfaces can lead to surface-localized excitations in thin magnetic films. This is also true in
superlattice structures, To see this, we now search for surface excitations on a semi-infinite
magnetic superlattice. As in figure 23, we locate the outermost surface of the superlattice
at y = 0. This corresponds to placing the surface at the first interface of the n = 0 unit cell.
The superiattice extends through the y > 0 half space, and we assume that the y < O half
space is vacuum,

The presence of a surface at y = () means that we must now define a magnetic potential
for the y < O region. We choose a form that represents exponential decay in the —y
direction:

d)outside — q)o CXP(‘H;}') exp[l(q“ ] wt)]. (50)

The decay constant g was determined by the Maxwell equation A - b=0.
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The requirement that the scalar potential satisfy the electromagnetic boundary conditions
at y = 0 leads to two equations involving Ap and By. Continuity of tangential A leads to

$y = Ay exp(—aa) + Bo (51)
and continuity of normal & results in
giPo = Agexp(—as)ry + Boh_. (52)

Using the relations given in equations (51) and (52), we eliminate $¢ from these two
equations to find

Bo/Ao = —exp(—as)l'y_ /T, (33)

In the superlattice region y > 0, we also require that the collective excitation decay
exponentially away from the surface with increasing y. We thus write

A, A,
(Bni:) = exp(—pL) (Bn) (54)

where g8 is positive and real.
Using this requirement in equation (44), we obtain for the case n = 0 the expression

A A
T ( Bg) = exp(—BL) (Bg) . (55)

Defining the components of T as Tj;, this matrix equation consists of two coupied equations:

TiiAg + Ti2By = exp(—BL)Ap (56)

and
T2 Ao + Trp By = exp(—BL)By. (57)

Eliminating exp(—pSL) between these two equations, we obtain an implicit dispersion
relation for the superlattice surface mode:

Ti1 — Tr2 + Ti2(Bo/ A¢) — T1{Ao/Bo) = 0. (58)
Using equations (43) and (53), this can be written simply as
sinh{(wa)F ... = 0. 3]

Equation (59) has three possible solutions. These are 'y = 0, I'.. = 0, and
sinh(aa) = 0. We can determine which of these represents a true surface mode by solving
for 8. We examine below each of these possible solutions in turn.

(1) Iy — = Orequires 8 = —(wd;+qdz). This would imply that the collective excitation
exponentially increases in the superlattice away from the surface rather than decreasing. This
possibility does not represent a true surface rmode.

(2) T__ = O requires B = ad) —qyda. As long as ad; is greater than ¢yd,, this solution
represents a true surface mode. This gives an interesting condition for the existence of a
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surface mode that depends on the relative thicknesses of the magnetic and non-magnetic
layer thicknesses. For the special case of propagation perpendicular to the applied field
in the x direction, this condition is simply that the thicknesses of the magnetic layers be
greater than that of the non-magnetic layers. Finally, we note that this collective surface
mode of the superlattice is composed of the surface modes from the individual magnetic
films since « is real.

(3) The possibility that sinh{eed;) = O can also be shown to represent surface modes in
the following way. First, sinh{ed)) = 0 when

~a =1imrx/d (60)

where mt is an integer greater than or equal to 0. In order to show that these cases correspond
to surface excitations, we need to find . This is done by repeating the arguments of
section 3.2.2, using exp(—BL) in place of the Bloch wave exp(iQL). The resuit is similar
in form to equation (49):

cosh(BL) = [[qﬁ + (1 + xp) + @2x3 )/ 2a0a (1 + xyy)} sinh(ad, ) sinh(gyd>)
+ cosh{ed, ) cosh{g)dy). : 61)

With the condition given by equation (61} such that sinh(xd,) = 0, this expression simplifies
to

cosh(BL) = (—1)" cosh{gyd). (62)
~ When m is even, tﬁen this represents a surface-wave solution with

BL = qyd>. (63)
When m is odd, then 7

BL = qydy + im(2m + 1), : (64)

The m-odd case also represents a surface-wave solution, but with a 180° phase shift between
the excitations of neighbouring magnetic films. Since & is imaginary for this case, these
collective surface modes are composed of bulk waves in the individual magnetic films.

To illustrate the difference between the two types of surface mode, in figure 24 we
sketch the amplitude of the magnetic potential as a function of position in the superlattice
for each type. In (@), we show the superlattice surface mode corresponding to I'—. = 0
and in {b) we show a superlattice surface mode corresponding to sinh{ed;) = 0 for m =
2. Both have amplitudes which are localized to the surface of the superlattice structure, but
each is constructed from a different set of coupled modes.

It is also possible to obtain simpie expressions for the frequencies of these surface modes.
The surface mode sketched in figure 24(a), which consists of the coupled surface modes of
each individual magnetic film, has a frequency given by '__ = 0. For propagation in the x
direction perpendicular to the applied field, the frequency is identical to the frequency
of the Damon—Eshbach surface wave on a semi-infinite ferromagnetic (eguation (33)).
Furthermore, it can also be shown that the superlattice surface mode is non-reciprocal with
respect to propagation direction and does not exist for propagation in the —g, direction.
This is also a feature common to the Damon-Eshbach mode of a semi-infinite ferromagnet.
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Figure 24, Amplifudes of the scalar magmetic
potential for surface modes as a function of position
in a semi-infinite magnetic superlattice. Two types
of collective surface mode are possible: {a) ones
composed of surface modes in the individual films,
and (b) ones composed of bulk mode in the
individual films. (After [91.)

Figure 25. Frequencies of superlattice spin waves
as functions of relative film thickness, The relative
thicknesses of the magnetic and non-magnetic films
is espectally important for the surface modes—the
surface mode exists only when the magnetic films
are thicker than the non-magnetic films. Shown
here are the spin-wave frequencies as functions
of relative flm thickness dy/dy for three different
choices of g. Propagation is perpendicular to the
applied field. The shaded areas are the bulk modes,
and g is a measure of the perpendicular component
of the wavevector, (After [9].)

The frequencies of the other surface modes are determined by equation (61). These

frequencies are given by

w = y{Ho(Ho + dm M) — [4 MyHo/(1 + (m/qud1)D)a: /) (65)

These modes are degenerate with the ferromagnetic resonance frequency for propagation
perpendicular to the applied field.

An example of the bulk and surface mode frequencies as functions of relative layer
thicknesses is shown in figure 25. Here propagation is perpendicular to the applied field.
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The parameters used for this calculation are appropriate to an Ni/Mo superlattice with M;
= 480 G and an applied field strength of 1 kG. The shaded areas represent collective bulk
modes and the full curves are the collective surface modes.

The band of bulk modes exists for frequencies between HyB and (Fp + B)/2. As qiL
increases, the frequency of a bulk mode decreases. For small ¢;L the density of states is
greatest near the bottom of the bulk bands. For larger ¢, the density of states becomes
more uniform across the bulk band.

The surface-mode frequency is independent of the thickness ratio d,/dz for di > da.
Its frequency is then identical to the Damon—Eshbach frequency for a surface mode on a
semi-infinite ferromagnetic. For d; < ds, the surface mode merges with the top of the bulk
band and is no longer a true exponentially decaying surface mode of the structure.

In terms of the results from Brillonin light scattering experiments for this geometry,
there should be three main contributions to the light scattering spectrum. The surface mode
should contribute strongly for d; 2 d», with a frequency above that of the bulk modes. Also,
the surface mode will exist only for certain propagation directions and therefore appear in
only the Stokes or antistokes side of the light scattering spectrum. The other two features
should be due to bulk modes. These modes shouid provide a strong bat broad contribution
from frequencies near the bottom of the bulk bands where the density of states is greatest.
There should also be a large contribution from modes near the top of the bulk band. The
reason is that the strength of the light scattering signal is in large part determined by the
overlap of the electromagnetic fields of the incident light with the fields produced by the spin
wave. Since an incident light wave has a limited penetration depth in a metallic superlattice,
the magnitude of the overlap is determined over the first few hundred Angstréms of the
superlattice. The higher-frequency bulk modes are characterized by small values of gL
which means that the magnetic fields produced by the spin wave vary slowly as one moves
away from the surface into the superlattice, The net value of the overlap of the light-wave
and spin-wave fields is thus much larger for spin waves with small values of ¢, L than for
spin waves with large values of ¢)L.

In figure 26, we reproduce experimental light scattering spectra taken from Fe/Pd
muitilayers. The different spectra are results for multilayers with various thickmess ratios
for the magnetic and non-magnetic films. Note that for d| > d, there is an extra peak on
the Stokes side which is due to a surface mode excitation. For d, < 4> there are only two
peaks visible in the spectrum. Note that the feature at Q is an artifact of the calculation
and does not represent a physical feature,

3.2.4. Spinwaves in finite multilayers. The characteristics of spin waves on finite multilayers
differ in many respects from those in semi-infinite superlattices. Some of the more important
differences are as follows. There will only be as many modes as magnetic layers. So with
N layers, there will be N — 1 collective bulk waves and one collective surface wave for
each mode of the individual magnetic films.

Since there are two outside surfaces of the multilayer, there will be surface mode
propagation in the +x and —x directions. The mode propagating to the left of the applied
field will be localized to one surface of the multilayer and the mode propagating to the
right: of the field will be localized to the other surface of the multilayer. Furthermore, the
surface-mode frequency will in general decrease with decreasing number of layers in the
multilayer.

The rule that a surface mode exists only when the thickness of the magnetic film is
greater than that of the non-magnetic film also does not hold for multilayers with small
numbers of layers [96]. For numbers of layers of the order of ten, the non-magnetic layer
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Figure 26. Theoretical and experimental Brillouin light scattering results for ferromagnetic/non-
magnetic multitayers constructed with different magnetic/non-magnetic film thickness ratios, The
iow-frequency peaks show the scattering from the coliective bulk bands and the high-frequency
peak is the surface mode. The experimental results on Fe/Pd multilayers correspond very well
to theory, with the surface peak only existing for d; > di. The surface mode switches sides as
the applied field is reversed. {Theory, after [9); experiment, B Hillebrands.)

thickness must be less than one tenth of the non-magnetic layer thickness, for example.
The transfer matrix method used above is especially useful for calculating the allowed
modes of a finite multilayer. One proceeds essentially as we did in our discussion of surface
waves by defining a magnetic potential outside each outside surface of the multilayer and
applying the appropriate boundary conditions at both of these surfaces. Unlike our treatment
of the semi-infinite stack, however, we must repeatedly apply the transfer matrix throngh
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each layer of the multilayer in order to relate the coefficients of the magnetic potential at
one outer surface to the coefficients at the other surface. This calculation can easily be done
numerically, although diagrammatic methods are also available which allow one to perform
the matrix multiplications fairly simply [97].

3.2.5. Spin waves in canted multilayers—effective medium theory. As described in section 2
of this article, the equilibrium orientations of the magnetizations of each film are determined
by the competition between exchange interactions, interactions with the static applied field,
and anisotropies. A very simple but interesting case occurs when the exchange interaction
between the magnetic layers across non-magnetic spacer layers is antiferromagnetic, as
discussed in section 2. In this case the Zeeman interaction tries to align the magnetizations
of each film along the applied field, while the antiferromagnetic exchange interaction tries
to align the magnetizations of neighbouring films antiparallel. For simplicity we assume
that this competition results in a spin configuration such as that shown in figure 15(a).

We illustrate the basic features of this system with an exampie consisting of N
ferromagnetic layers separated by N — 1 non-magnetic layers. As shown in figure 15(a), the
magnetizations of each magnetic layer are assumed to make an angle 6 with the external
applied field. The magnetizations of neighbouring magnetic layers are rotated from one
another by the angle 26. As the field is increased, # will become smaller and will eventually
go to ze1o. The magnetizations of all layers will then be parallel. The field strength for
which this occurs is [60]

Hy=44/M (66

where M is the net magnetic moment in a film.

As remarked in section 3.2.3, the most prominent features of a Brillouin light scattering
spectrum from a magnetic multilayer come from the surface mode and the small ¢y L bulk
modes. We can make a very simple argument for the frequency dependence of these modes
as a function of @ in the following way. First let us consider the surface mode. The
frequency of the surface mode for a multilayer with N > 1 was shown to be given in
equation (33). The surface mode is characterized by an exponential decay of the spin
wave’s magnetic potential away from the outer surface of the multilayer. The decay length
is in general very long in comparison to the size of a unit cell. This means that the surface
wave is fairly insensitive to changes in the magnetization over distances comparable to the
length of a unit cell and instead is affected by the average magnetic properties of several
unit cells. Thus the frequency of a surface wave depends not on M; but on the average
magnetization.

The average magnetization for the magnetic layers in a unit cell is given by

Mg = M, cosb. (67>

The frequency of the surface wave for @ > ( should then be obtained simply by replacing
M; in equation (33) by My, [98]):

;= 3(Hy + 4m M, cosé). (68)

The frequency of the gL = 0 mode is the ferromagnetic resonance frequency given by

Q=  Ho(Hy + 41 M,). (69
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By exactly the same arguments as those given above, the frequency of this bulk mode for
6 > 0 should also be given by replacing M; by May,.

The validity of this approximation can be checked by comparison to an effective
medium calculation which takes into account the magnetic fields in each film and solves
the appropriate electromagnetic boundary condition problem. The effective medium
approximation is a relatively simple approach which correctly gives the frequencies of
the surface and ¢ L = 0 bulk modes [99-102].

The essence of the effective medium method is as follows. The dynamic response of
each magnetic layer is written terms of the dipolar fields in each layer via the Landau—
Lifshitz equations of motion. In terms of configuration shown in figure 15, this results in a
set of equations for the motion of spins canted at an angle 8 from the direction of the applied
field and another set of spirs canted at an angle —6 away from the applied field direction.
These two sets of equations are coupled through the interlayer exchange interaction J; and
dipolar fields.

Next, an average fluctuating magnetization m is defined as the sum of the fluctuating
magnetizations created by the two sets of spins. If we label the magnetizations of adjacent
films as m® and m® respectively, then m is simply

m = 3(m* +m").

Correspondingly, the equations of motion for s are the sum of the two sets of equations
of motion. These are

my = 41 co8? (k2 + ) + X2 cosO(h} + ) + xesin cos O (ht — )] 7
my = 4] =xall2 + ) cos0 + xs(#} + 1) + xasin® (A2 — %) a
m, = %[x:: sin @ cos 8(h} — h0) — xssin@(h% — AY) + xasin® O (h2 + h'z’)] (72)

where h? are the dipolar fields acting on the set of spins canted by 6 from the field direction
and kP are the dipolar fields acting on the set of spins canted by —@ from the field direction.
The x values are given by

X1 = —(:ZMSHc/Hg) 22 /[(w/y)" 2] 73)
X2 =iMy(@/y)/[w/v)* — Q%] (74)
X5 = —(Ho/2H.) M, Ho/[ (0/)* — €] (75)
xs = —(Q/2HIMQ_[[(w/y) — 2] (76)
x5 = iMa/¥)/[(0/¥)* - Q1]. 77

The field H. is the antiferromagnetic exchange field defined as H. = J;/gug. The
magnetizations are canted for Hy < 2H.. We also include an easy-plane-type anisotropy
field, H,, which tends to align the spins in the xz plane. The poles of the y values are
given by

QL = Ho(Hy + Hycosb) (78)
Q% =2H.H,sin6. (79
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To bring equations (70}~(72) into the form of a susceptibility m = x - & an appropriate
average field h must be defined. This can be done in direct analogy to the definition of an
average m:

h= 35+ 1. )

The magnetic fields must obey Maxwell’'s equations and satisfy electromagnetic
boundary conditions at the interfaces between films. Thus the tangential fields & and normal
fields b must be continuous from film to film. In the geometry of figure 23, this means that
ki = h% and h? = h but does nor require A% = A5. In order to satisfy the continuity of
normal b requirement, one defines a field k in the non-magnetic films and uses the equations
of motion to eliminate the quantities 47 + hg‘, which appear in equations (700—(72).

An effective medium susceptibility can then be calculated using equations (70)<72).
The resulting susceptibility tensor has the form

Xxx  Xzy 0
X=X X»w 0 |. (81)
0 .0 Xzz .

The boundary conditions on normal fields & introduce “filling factors’ into the poles of the
susceptibiiities which shift the resonance frequencies according to the relative thicknesses of
the magnetic and non-magnetic films. Canting, on the other hand, also shifts the resonance
poles and leads to the existence of a x;; term that does not appear when the magnetizations
are aligned parallel. The explicit results are somewhat lengthy and can be found in [98].
Instead, we show the results for the special case of the limit of vanishing non-magnetic
layer thickness:

Xt x2 0 -
X = |i=—X2 X3 0 ] (82)
0 0 X
where
Xz = —{(S/2He) M Qa/[(/y)* — Q2]. . ' )

The pole £24 of the zz component goes to zero as the canting angle goes to zero:

Q4 = sin@y/2H,(H, +4n My). &4

Note that in this limit the system is identical to a two-sublattice easy plane antiferromagnet.
The results here differ from earlier treatments of the antiferromagnet in that we have
consistently taken demagnetizing fields into account whereas previous treatments did not.
The resonance frequency given by equation (84} therefore includes a demagnetization factor
4w M; which does not appear in earlier calculations.

The effective medium susceptibilities derived in this manner are very useful in that
magnetostatic excitations for finite and semi-infinite multilayers can be calculated as
in section 3.1.2 for the magnetostatic excitations in a corresponding uniform medium.
The difference is that one uses the effective medium susceptibilities in place of the
susceptibilities for 2 homogeneous material (equations (24)). This method has been used to
study ferromagnetic and antiferromagnetic superlattices {102-104] as well as for structures
with helical and conical magnetic ordering [105]. Also, since the effective medium
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susceptibilities are considerably different from those for a uniform ferromagnetic, the

dispersion relation also differs from equation (32) and the decay constant is modified.
These relations become

T (Klu‘yy/q[l)z + [(Qx/‘i’u)#xy]z + 2(K/ql|)uyycotan(tcL) =0 (85)

with

Zicind 2 172
= [qll (sin” ¢ txx + cos ¢'#zz)] / (86)

iy

The permeability u is defined as usual; p = 1 +4xx. The angle ¢ is defined between g
and the z axis. Finally we remark that an effective medium calculation of the surface-mode
frequency gives the same result as an expansion to first order in gL of the dispersion
relation obtained using the transfer matrix method [101].

In figure 27 we compare the resuits of effective medium theory to the approximations
of equations (68) and (69). The circles are the surface-mode frequencies of equation (68)
and the squares are the bulk-mode frequencies given by equation (69) with the replacement
for M;. In this figure the frequencies of the spin-wave modes are shown as functions of the

“applied field strength.

The full curve is the result of the explicit multilayer calculation for the surface mode.
The shaded area represents the bulk band obtained from this same calculation. The gL =0
mode lies at the bottom edge of the bulk band. For Hp > 0.9 kG, the magnetizations of
the magnetic films are aligned parallel to the field. For fields less than this, magnetizations
are tuned away from the direction of the field by the angle 8. The frequencies of the
surface mode and lowest bulk mode decrease with decreasing field and go to zero as Hy
goes to zero. There is clearly very good agreement between the multilayer calculation and
the approximations of equations (68) and (69) using the averaged magnetization, M.

The results of the multilayer calculation show several interesting features in the 4 > 0
region for fields below 2 kG. Here there are two bands of bulk modes and two surface
modes. This is a common feature of multilayers composed of antiparallel ferromagnetic
films. The modes from the two bands cross at Hy = 1 kG. The highest-frequency mode
begins near 20 GHz for Hy = 0 and goes to zero at Hy = 2 kG, This is a surface mode and
exists only in the @ > 0 region.

Recent experiments on Co/Ru and Py/Ru multilayers by FaBbender et al [106, 107] have
confirmed this picture. Using Brillouin light scattering they measured the frequency of the
surface mode as a function of the applied field for a series of multilayers with differing Ru
layer thicknesses. In particular, the surface-mode frequency tended toward zero as the field
was decreased, as shown in figure 27.

The effective medium treatment presented in this section is based on the assumptions of
a uniformly canted structure and excitations which are long wavelength in nature. In the next
section we explore an approximate treatment for shorter-wavelength modes which includes
dynamic exchange interactions. While useful, this treatment is also an approximation. A
complete treatment for spin waves in arbitrarily canted structures that treats exchange and
dipole contributions exactly is presented in section 3.3.

3.2.6. Effects of dynamic exchange interactions. To conclude our introductory examination
of spin waves in magnetic superlattices, we discuss some aspects of dynamic exchange
coupling between spins. To begin we recall that all of our discussions up to this point were
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structure. The frequencies of spin waves in a maltilayer
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Figure 28, Spin-wave frequencies as functions of

interlayer exchange. The lowest-frequency modes
for a six-film muliilayer are shown. Here positive
Ay indicates ferromagnetic coupling and negative A2
antiferromagnetic coupling. The horizontal line is the
surface wave and the others are bulk modes. The
magnetizations are assumed to be parallel to the applied
field. Note that the modes soften as Ajp becomes
more negative, indicating that the aligned state becomes
unstable. (Afier [172].)

made under the assumption that the magnetic response of the spin systems could be described
with a magnetic susceptibility ¢ that was independent of position as in equation (24). This
is a valid description for spin-wave wavelengths which are very long in comparison to the
lattice spacing, but the description breaks down for shorter wavelengths.

For short-wavelength excitations one needs to include terms in the Hamiitonian, or
equivalently the equations of moticn of equation (23), which take into account dynamic
exchange interactions between neighbouring spins. Ore way of doing this is to include in
the equations of motion an effective exchange field of the form [108]

hex = DVim _ 8N

where D is the exchange stiffness constant and is proportional to the exchange constant of
a Heisenberg spin model. The result of adding this term into the equations of motion is to
introduce a spatial dispersion into the susceptibility.
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Because of this, calculations which include both exchange and dipolar interactions can be
quite complicated. The reason for this complication is that the exchange interaction is itself
responsible for a family of pure exchange modes which are normal modes of a magnetic
film. The dipolar interaction couples these modes and a superposition of exchange modes is
required in order to satisfy the electromagnetic boundary conditions at each surface of a film
[108]. In a multilayer, a superposition of exchange modes is required to satisfy the boundary
conditions at each interface [109). The special case of double layers was considered by
Griinberg and co-workers [110]. We aiso note that most previous calculations employed
Hoffman boundary conditions [111]. These conditions have been re-examined recently and
small corrections have been shown to be necessary [112,113].

Calculations which use an effective exchange field of the form given in equation (87)
typically find approximate solutions to the problem by superposing six of the lower-energy
exchange modes of each film at each interface. The calculation is somewhat involved and
must be done numerically.

In a single thin ferromagnetic film, the spin waves gain an energy of the order of

D(aj +q3)° (88)

where here we have written g, to indicate the component of the spin wave’s wavevector
normal to the surface. For the surface mode and the ¢, = 0 bulk mode, the energy increase
is only Dqﬁ, which is relatively small for typical light scattering experiments.

The main effect of including exchange interactions in the theory is to increase the energy
of the bulk modes. For bulk modes, g, is approximately given by

qy = sx/d (89)

where s is an integer and 4 is the thickness of the film. For Fe, D is of the order of
107 J cm~2. For thin films of the order of 100 A, even the s = 1 bulk modes have energies
which are much larger than the surface mode. Therefore the lowest-frequency collective
modes of a superlattice consisting of thin films will be composed of the surface modes of
the individual thin films,

In a similar fashion, exchange coupling between the magnetic films of a muitilayer will
alter the frequencies of the collective modes. Interlayer exchange coupling, however is
typicaily 100-1000 times smaller than intralayer exchange coupling. The collective surface
mode will again remain largely unaffected, but the frequency of the collective bulk modes
will change approximately according to

Aw =y Q% = yJi(sm/L)? (90

where @, is the component of the Bloch wavevector along the axis of the multilayer and
Ji is a measure of the strength of the interlayer exchange coupling. The height of the
multilayer is L, as before. Note that the energies of the bulk modes decrease in the case of
antiferromagnetic coupling where J; is negative,

An example illustrating the effects of interlayer exchange coupling is shown in figure 28.
Here the frequencies of the collective modes of a six-layer multilayer are shown as a
function of interlayer exchange. Here A; is a measure of J;. The surface mode appears as
the approximately horizontal full curve, and the energies of the remaining five bulk modes
increase with increasing J;. The larger Q, is for a given mode, the more sensitive it will
be to J;. We note that the dependence of the bulk spin-wave energies on the ferromagnetic
interlayer exchange has been demonstrated experimentally [109]. Oscillations in the sign
of the interlayer exchange coupling as a function of non-magnetic layer thickness have also
been extensively examined for Fe/Cr/Fe sandwiches [110] and Co/Ru superlattices [106].
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3.3. Discrete model and phase transitions

In section 3.2.4 we encountered a simple example of how the dependence of spin-wave
energies on the ground state configuration can signal a magnetic phase transition. In the
example shown in figure 15 we see a transition between an antiparallel aligned state at
zero applied field and a canted state for small field strengths, and finally a transition to a
fully aligned state at larger fields, Each of these phase iransitions is accompanied by the
softening of a spin-wave mode.

In order to consider all of the phase transitions dlscussed in the second section of this
article, we need a spin-wave theory that allows the spins to be able to lie at arbitrary angles
to the direction of the applied field and also allows the angle of rotation to vary from layer
to layer. A complete theory would also treat dipolar and exchange effects exactly and not
resort to the Iong-wavelength approximations discussed in the previous sections. Such a
- model is by its nature discrete and uses the true effective fields at each lattice site.

We will present the general theory shortly, but first review by way of infroduction what
can be learned about some kinds of transition from a theory which assumes a simple uniform
spin configuration. We will see, for example, that the surface phase transition in the Fe/Gd
superlattice described in section 2 is accompanied by a softening of a surface spin-wave
mode.

3.3.1. Surface phase transitions in semi-infinite superlattices. In section 2 we saw that the
semi-infinite antiferromagneticaily coupled Fe/Gd superlattice can display three different
phases depending on the temperature and strength of the applied field (see figure 17). Fora
13-layer Feffive-layer Gd system at low temperatures and smail applied fields, the Gd will
- prefer to align along the field direction. When the field is increased, and with Fe films at
the surfaces, the system goes into a surface-twist phase as shown in figure 18. As discussed
in section 2 the transition from the aligned Gd state to the surface-twist state begins with
the outermost Fe spins. In contrast, an Fe/Gd superiattice constructed with Gd spins af the
surface will undergo a transition from the aligned Gd phase to the twist phase than begins
not at the surface, but in the bulk [59].

This disparate behaviour between Fe/Gd superlattices with Fe or Gd at the outer surface
is also reflected in their respective spin-wave frequencies. We show this by calculating the
spin-wave energies for each superlattice in the aligned state and observing the effects of
increasing the applied field strength. In the following theory we neglect dipolar interactions
and fields and include only nearest-neighbour exchange interactions [59].

With only exchange energies and the Zeeman energy due to the applied magnetic field,
the equations of motion have the simple form

(d/d1)S, =y S x (Ho +3 J,,.,,Hsm) o1
§

where S, is a spin in layer n, § is an index over nearest neighbours, and J, ,.s is the
exchange interaction (in field units) between neighbouring layers of spins. A spatial and
time dependence of the form expli(g)z; — wr)] is assumed where gy is the component of
the wave vector parallel to the interfaces.

A wave vector component perpendicular to the layers is also defined using the Bloch
theorem. If the unit cell of the superlattice consists of a total of N Fe and Gd layers, then
the spins in neighbouring cells are related by

Spin = S, exp(xpL) (92)
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where L is the length of the unit cell and 8 is the perpendicular component of the wave vector
and is in general complex. Real 8 comespond to exponentially increasing or decreasing
solutions and are associated with a surface wave. Imaginary 8 represent travelling waves
associated with bulk spin waves. Substitution of these solutions into the equations of motion
of equations (91) and linearizing resuits in two equations for the spins in each layer of a unit
cell. The number of equations is reduced to one equation per spin layer by transforming to
the variables St = §; -+ iS,.

The equations of motion will be identical in form from one unit cell to the next except
for the spins in the unit cell at the surface of the superlattice. In the bulk of the superlattice,
the equations of motion for the spins in a unit cell are

sF Ho+ sy DQSf iz - 0 e DQS} Jg je~AL
o | S5 DQSTJy 2 Hy+sy DQS3Ja3 --- 0 0
y| | :
Sy DQS%, Sy wiefl .o 0 s DQSHINo N Hp+8w-
Sy
Sy
x| . (93)
Sy

where Sy = 4(8% Jo,1 + S3J12) and Sy = 4(S§_; Jv—1.~ + Si Iv.n+1), and where
~

DQ = —A(gy) = —cos(2q,/a) cos(2g./a) (94)

with lattice constant @. A BCC lattice is assumed.

The equations of motion for spins in the surface unit cell are identical to equations (93)
except that the first equation no longer contains terms coupling the outermost layer to the
next cell. Thus the first equation is replaced by

(@/y)S] = [Ho + 485012181 — [Alar)Si/1.2)S7 (95)

There are then two unique sets of equations, one for the spins in the outermost unit cell and
one for the spins in a unit cell in the bulk. The problem is then solved by choosing @ and
B pairs that simultaneously satisfy both sets of equations for a given field Hy and paraliel
wave vector g). This is done numerically in & straightforward manner.

Results of this calculation for a superlattice composed of 13 layers of Fe and five layers
of Gd per unit cell are shown in figures 29 and 30, In figure 29 Hy = ¢ and the spins are
in the aligned state. The shaded areas are bulk modes. The circles show the surface mode
for the superlattice with Fe at the surface and the squares show the surface mode for the
superlattice with Gd spins at the surface. Note that the surface mode for the structure with
Fe spins in the surface layer is separated from and lies below a bulk band. The surface
mode and bulk band for the structure with Gd in the surface layer are degenerate with zero
energy at k = 0.

The two bulk bands behave differently with respect to the applied field: the frequencies
of the vertically shaded bulk band increase with increasing field and the frequencies of
the horizontally shaded bulk band decrease with applied field. This is indicated by the
arrows in figure 29, The surface spin-wave frequencies also depend quite differently on the
applied field for each of the two structures. Again as shown by the arrows in figure 29, the
surface-wave frequency for the Fe surface structure decreases with increasing field while the
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Figure 29, Dispersion relation for bulk and surface
spin waves in a semi-infinite superlattice with unit cell
13 Fef5 Gd. The applied field is zero. The arrows
indicate the motion of the spin-wave dispersion curves
with increasing field. The Fe surface mode occurs only
for the system with Fe on the outside, while the Gd
surface mode occurs only for the system with Gd on
the outside. The bulk modes shown are those for an
infinite sample and are thus independent of the surface.
(After [59].)

Figure 30. Dispersion relation for bulk and surface
spin waves in a semi-infinite superlattice with unit cell
13 Fef5 Gd. The applied field is & = 0.01, near the
value needed to drive the lowest surface mode to zero
frequency. The arrows indicate the motion of the spin-
wave curves with increasing field, The Fe surface mode
occurs only for the system with Fe on the outside, while
the Gd surface mode occurs only for the system with
Gd on the outside. The bulk modes shown are those
for an infinite sample and are thus independent of the

surface. (After [59].)

surface-wave frequency for the Gd surface structure increases with increasing field. This
behaviour continues as the field is increased with the result for the Fe surface structure that
the surface mode becomes soft at a finite field value.

Figure 30 shows the spin-wave modes for the same structures with Hy = 0.01Jp, where
Jre is the exchange constant for bulk Fe in field units. This choice of field puts the Fe
surface superlattice at the transition point between the aligned phase and the surface twist
phase. The surface mode for the Fe surface structure has become soft for this field. The
interesting point is that the softening of the surface mode signals a phase transition which
nucleates at the surface. Examination of the ground state (see section 2} shows that the
twist penetrates further into the bulk as the field is increased. It is interesting to note that
the critical field for a transition 0 a state where all of the Fe and Gd spins are canted
can in fact be as much as five times larger than the critical field for the transition to the
surface-twist state. _ '

34. Phase transitions in finite multilayers

The previous example illustrates some of the basic features of spin-wave dynamics near
magnetic phase transitions. In particular we have seen that a phase transition is signallied
by a mode softening. Some phase transitions occur because the environment of a surface
spin is very different from that of a spin in the bulk and a softening of the surface mode is
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a particularly sensitive indicator of these kinds of transitions. In order to study transitions
between more complicated states using spin waves we must extend the dynamic theory to
inciude arbitrary spin configurations [96].

A theary along the lines used for Fe/Gd can be constructed by first separating the spin
variables into static and dynamic parts:

Sp{@), €) = Sy + spexp[i(gqy - 3y — 1)]. (96)

The equations of motion (equations (91)) are linearized by keeping only first-order terms in
the components of 8,. The direction of S, is found using the techniques of section 2. In
general it is no longer possible to apply Bloch’s theorem, and so one must solve the entire
set of coupled equations for all magnetic iayers in the multilayer. The set of equations can
be put into eigenvalue form with frequencies o as the eigenvalues. There are two equations
for each layer resulting in a 2N by 2N matrix to be diagonalized. This of course places
practical limits on the size of the multilayers we can describe with this theory.

It is also possible to extend the calculation to include dipolar coupling. This means
adding to the equations of motion an effective field of the form

hP(xy, t) = (gun) ZZ[S @D g1 Sel@ ) ] 97

ir—rpB r— |3

where r is the position vector to the spin at (x), #) and 7’ is the position vector to the spin
at (mf,, n"). As written the sums converge quite slowly, but techniques exist to put them
into a rapidly convergent form [114].

A useful approximation can be derived for long-wavelength excitations. In this
approximation the dipolar fields are written most conveniently in terms of their static and
dynamic parts, defined as H, and h,(qy), respectively. These are given by [96]

hn(@1) = 2qa(gus) ) exp(~qraln - n'l)

(g:/q)° i sgnz —n"(g:/q) 4:4:/9°
x | isgn(n —n')g:/q ~1 i sgn(n — n’%qx/q Sy
4:4:/9* i sgn(n —n')g:/q (g:/9)
(98)
and
2 00
H, =4rr(g_u3)|:0 —1 0]5,,. (99)
0 o 2

The static term is nothing more than the local field acting on a spin within a ferromagnetic
film. This approximation neglects, to some degree, the discrete nature of the lattice and
assumes a demagnetizing field appropriate to a thick film. The errors involved are small
however, even for quasi-two-dimensional films. Thus the variation in the dipolar field from
layer to layer is reasonably well represented by this treatment.

Our first example is shown in figure 31. Here the lowest spin-wave energies are shown
as functions of applied field for a multilayer constructed from ten magnetic layers. The
parameters agree with those used in the effective medium theory to generate figure 27.
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Figure 31. Spin-wave frequencies in the mniform
canted state. The lowest spin-wave frequencies are
shown as functions of applied field for a ten-film
multitayer. The magnetizations are canted away from
the field for k < 1 and parailel to the field for &> 1.
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Figure 32. Mode profiles in the uniform canted state.
The transverse magnitudes of spin fluctuations in the
yx plane are shown for each of the ten lowest-energy
modes shown in figure 31. Note the localization of
mode 10 to one side of the multilayer. (Afier {96].)

Propagation is perpendicular to the field:direction. The
modes are numbered for future reference as shown.
(After [96].) -

A uniform ground state where 8 is defined by equation (18) is also assumed in order to
compare the two theories. The modes labelled 1 and 10 have the longest wavelengths and
the frequencies of these modes agree well with the corresponding modes calculated with
effective medium theory. The other modes shown in figure 31 are true bulk mades and are
not correctly represented with effective medium theory. It is interesting to note that the
bulk modes are degenerate in frequency at one field.

The transitions from aligned to canted spins can be seen in the frequencies of modes
1 and 10. The spins in adjacent films are canted for 0.9 > h > 0. The energy of mode 1
decreases with increasing field until it finally becomes soft near £ = 0.9 where the spins align
in direction of the field. Note however that mode 1 actually becomes soft at a field smaller
than 2 = 0.9. This is because we have used the wrong ground state spin configuration.

The mode amplitudes give information above the localization of spin waves. The
amplitudes comresponding to the ten modes of figure 31 are shown in figure 32. The
quantity plotted is the magnitude of the spin fluctuations in a plane transverse to the applied
field, smns [115]. Mode 10, a surface mode, is significantly localized to an outer surface of
the multilayer while the other modes are not.

A similar calculation using the comect ground state spin configuration (as determined
by the methods described in section 2) is shown in figure 33, The transition to the aligned
state occurs at 2 = 0.9 and mode 10 now softens at & = 0.9. There is now a great deal
of mixing between all modes for fields less than 0.9. All the spin-wave amplitudes in the
proper ground state are localized to the outer surfaces of the multilayer to some degree.
Modes 3 and 6 are particularly strongly localized to the outer layers for this choice of field,
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Figure 33. Finite-size effects. The comrect ground state
spin configurations were used in the calculation of the
spin-wave frequencies. The frequencies are shown as
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Figure 34. Localization of modes due to finite size.
Span is shown at k = 0.4 for the modes of figure 33,
The finite-size effects are due to the reduced exchange
coupling experienced by the outermoest films of the
multilayer. This leads to a sirong mixing of modes
and the localization of several mode amplitudes to the

for k > 1. Note the strong mixing of modes for £ < 1.
(After [96].)

outermost flms of the multilayer. {After {96].)

as can be seen in figure 34 where the sy, values are shown for the ten modes of figure 33.

4. Giant magnetoresistance in magnetic multilayers

4.1, Introduction

One of the most exciting and surprising properties of some of the new magnetic multilayers
is the phenomenon of giant magnetoresistance. Here the resistivity of a multilayer structure
can be changed by up to 60% (at room temperature) through the application of a magnetic
field. This effect was originally discovered in Fe/Cr sandwiches [116] and multilayers [117]
but has since been found in many other magnetic multilayers systems [47]. These include
Co/Cu [48], Co/Ru [16], Ni/Ag [118] and Co/Au [119]. As we will see a key feature of the
giant magnetoresistance is the change in the magnetic spin configuration as a function of
applied field. Thus, as we saw in section 2, systems with some antiferromagnetic coupling
are of particular interest.

The put the giant magnetoresistance effect into perspective, we first review the normal
magnetoresistance effects in non-magnetic and magnetic metals [120]. For non-magnets,
one generally finds a positive magnetoresistance effect in that the resistivity increases as an
external field is increased. This increase is generally proportional to B?. For magnetic
materials one finds what is called the ‘anisotropic magnetoresistance’ effect where the
resistivity of the metal depends weakly on the relative orientation of the magnetization
and the current. The resistivity is generally largest when the magnetization and the current
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are parallel (py) and smallest when the magnetization and the current are perpendicular (o).
For crystalline sampies the resistivity tensor giving p in terms of the direction cosines of
the magnetization with respect to the crystalline axis can be quite complicaied. However
for polycrystalline samples one finds the simple relationship that

p=p) + Apcos’ @ (100)

where § is the angle between the current and the magnetization; Ap = p; — p;. For typical
magnetic materials in use today Ap is rather small. For example at room temperature
Ap/pg is 0.2% for Fe, 2% for Ni and 3-4% for Permalloy. ’

In contrast to the above, the giant mapnetoresistance effect measured in magnetic
muiltilayers can be more than an order of magnitude larger. Also, the giant magnetoresistance
effect is effectively independent of the relative orientation of the magnetic field with
respect to the curment, but depends on the relative orientation between magnetizations in
neighbouring ferromagnetic films. As we will see, this orientational effect occurs because
electrons with a specified spin in one Fe film can have a different spin direction when
measured in a different Fe film with a different orientation for the magnetization.

In the Fe/Cr samples which were studied, there is an effective antiferromagnetic coupling
between Fe films due to the intervening Cr films. As 2 resuli, the magnetic moments in
neighbouring Fe films are antiparallel to each other in zero field. With a strong enough
external field, the antiferromagnetic coupling may be overcome, and the magnetic moments
of all the Fe films can be forced to lie in the same direction. A typical plot of the resistivity
of an Fe/Cr/Fe sandwich structure is shown in figure 35. As can be seen, the resistivity
is largest when the Fe moments are antiparalle! and smallest at higher fields when the Fe
moments are forced to be parallel.
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B0 T] effect, neglected in the theory. (After [125).)

The experimental results on Fe/Cr multilayers [116,117,121] can be summarized as
follows. (1) The resistivity is typically measured with the current fiowing paraliel to the
interfaces. It is highest when the magnetic moments in neighbouring Fe films are antiparallel
and smallest when they are parallel. (2) Multilayer structures with many thin Fe films have
a much larger magnetoresistance effect (50% at low temperatures) than a single sandwich
structure of Fe/Cr/Fe (3% at low temperatures). (3) Changing from room temperature to
liquid He temperature increases the magnetoresistance by a factor of 2-3. (4) Experiments
with the current flowing perpendicular [122] to the interfaces have shown significantly larger
magnetoresistance effects than those with the currents flowing paraliel to the interfaces, in
agreement with theoretical calculations [123].
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The physical mechanism responsible for the giant magnetoresistance effect is still not
completely clear. It was originally suggested [117] that spin-dependent scattering at the
interfaces was the dominant contribution, Such spin-dependent scattering is a2 well known
phenomenon in magnetic metals [124]. For instance it is known that Cr impurities in Fe
scatter up electrons 4-6 times more strongly than down electrons. Schematically one can
understand this spin-dependent scattering in the following way. In most ferromagnetic
metals the s electrons carry the majority of the current since the effective mass of the
d electrons is guite large. The s bands are approximately parabolic but the d bands are
exchange split as illustrated in figure 36. In a spin-conserving scattering process spin-up s
electrons can scatter to the spin-up s or d bands. Similarly a spin-down electron scatters to
the spin-down s or d bands. However as the density of states for the d bands is exchange
split, the density of states at the Fermi level is different for spin-up and spin-down electrons
leading to different scattering rates. Impurities can enhance this difference if the impurity
states are spin split and have energies on one side which are at the Fermi level.

sband — (b}
dband—._
//
D(E) I{E) ferromagnet ferrémagnet
spin down spin up mixing
Figure 36. Schematic itustration of clectronic density Figure 37.  Spin-dependent scattering mechanism,

of states for Fe, The density of states for the up spins
is shown on the right and for the down spins on the
left. Note that the s band is approximately parabolic
while the d bands are split. This results in a different
density of states for the up and down electrons at the
Fermi level.

(@) Possible particle motion for spin-up and spin-
down electrons are shown when the magnetizations
in neighbouring Fe films are parallel. A diffosive
scattering event is indicated by a star. (&) The
magnetizations are antiparalle, resulting in a larger net
number of scattering events,

How such spin-dependent scattering could lead to the giant magnetoresistance is
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illustrated in figure 37. In (a) we show typical particle motions for spin-up and spin-
down electrons when the magnetizations in neighbouring Fe films are parallel. If a spin-up
electron reaches an Fe/Cr interface it is likely to be diffusively scattered. On the other hand
a spin-down electron can pass through one or more interfaces without being diffusively
scattered. In (b) we examine the case where the magnetizations of the neighbouring Fe
films are antiparallel. Here a spin-up electron approaches the Fe/Cr interface from the left
as before and is diffusively scattered. A spin-down electron on the left passes through the
left Fe/Cr interface but on reaching the right interface is iocally a spin-up electron and
thus has a high probability of being scattered. Comparing the two situations, we see that
there are a larger number of scattering events when the Fe magnetizations are antiparallel
than when they are parallel, and thus the resistivity is greater when the magnetizations are
antiparallel. In this picture most of the spin-dependen: scattering occurs at the interfaces
because the largest mixing of Fe and Cr occurs at the interfaces.

The mechanism described above is clearly not the cnly possibility. Clearly some spin-
dependent scattering can take place within the bulk of the ferromagnetic films as well.
Also it is not clear that spin-dependent scattering asymmetries measured for low impurity
concentrations appropriately represent the kind of scattering asymmetry to be found in an
interface. These questions will be dealt with later in this section.

4.2. Theoretical model

We now turn to a simple theoretical model [125-127] which can describe the general
features of the giant magnetoresistance. This model is an extension of the Sondheimer—
Fuchs treatment of the resistivity of a thin film [128]. In this case it is assumed that
the electron transport through the muitilayer structure is governed by the semri-classical
Boltzmann equation

—(e/m0E +vx B) - Aof +v-Arf =—(f ~ fo)fr (101)

where f, the electron distribution function, depends on both position and velocity.

The geometry of our unit ceil is presented in figure 38 which shows two films of Fe
separated from a Cr film by a mixing region, m, on either side. Physically the mixing region
represents the portion of the multilayer in which there are significant densities of both Fe and
Cr. Experiments in the Fe/Cr system estimate that this mixing region can be on the order
of 4 A or larger. A static electric field is applied along the x axis parallel to the interfaces.
A magnetic field is applied along the x axis in order to overcome the antiferromagnetic
coupling between the Fe films. Note that the broken line separating regions C and D does
not represent a true interface. Instead this is the point at which we take into account the
change in quantization axis for the electron spin. Such a change is required because the Fe
magnetizations in neighbouring films are not, in general, parallel to each other.

The conductivity of the structure is found from the electron distribution function which
exists in the presence of the external electric field. In a perturbation expansion of this
distribution function is given by the Fermi-Dirac distribution fy(v) plus corrections, g(z, v)
due to local scattering, surfaces and interfaces, and the electric field. The fact that the
scattering rates depend on the position of the electron introduces the spatial dependence
into the correction term. Thus we write

8, v) = £ P ) + 6™ (@, v). , ' (102)

Here and in what follows the arrows refer to spin-up and spin-down electrons. For brevity we
drop the functional dependence of g or z and  from now on. If we substitute equation (102)
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A B C DE F

Fe m Cr m Fe

Figure 38, Geometry of the Fe/Cr/Fe sandwich including mixing
E regions. The centre of the structure is at z = 0, and the boundaries
of the mixing region are at z = %a and z = b, An electric
field is applied along the x axis, as shown. The z = 0 dotted line
z is an artificial boundary at which the change in quantization axis
€ b -8 z=0 2 b ¢ is introduced. (After {1271.)

into the Boltzmann equation and retain only the linear terms in the perturbation we obtain
3gTW faz + g™ /oWy, = (eE/mv,)3f5/dv;. (103)

The term arising from v x B in the Boltzmann equation is also neglected since it is small
In this equation e is the electron charge, T is a spin-dependent relaxation time, and m is the
effective mass of the electron in each region. It is convenient to separate g into two parts:
g+ for electrons with positive v; and g_ for electrons with negative v,. Equation (103)
is a simple first-order differential equation for g. The solution has the same form in each
region. For example in region A one finds

812) = (eEr““/m)(afo/avx) |:1 + F,.I_;“ exp(—-z/r““uz)]. (104)

Similar expressions hold for the other regions. The only unknowns at this point are the
values of F appropriate for each region. These are functions of v and are found by using
the boundary conditions at the interfaces between regions.

The boundary conditions connect the electron distribution functions at the interfaces.
Since we assume that the Fermi-Dirac distribution function is spatially independent, only
the g terms enter the boundary conditions. For example at the cuter surface the distribution
function g for an electron leaving the surface is equal to the distribution function for an
electron of the same spin striking the surface multiplied by the probability p of a specular
scattering event. Thus for the finite sandwich structure, where z = ¢ represents the outer
boundary, one obtains

g =pgl¥ az=—c (105)
gl = pelV stz =+, (106)

The infinitely extended superlattice structure may be treated by assuming perfectly reflecting
surfaces at the outer boundaries (i.e. p = 1 in equations (105) and (106)) but setting the
position of the interface at (c 4 )/2. The interior boundary conditions are derived in a
similar manner. For example the distribution function for electrons leaving the interface at
z = b into region F depends on the probability of electrons in F hitting this interface and
being reflected back into F, and the probability of electrons from region E being transmitted
into region F. Thus one boundary condition at z = b is given by

gV = THhghth 4 pi gt at z = b 107)
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where T% and RT are the transmission and reflection coefficients for an up spin. In principle
these could be estimated using a free-electron-type model for each material by including
contact potentials that arise from the differences in work functions for the different materials.
An example of such a calculation is found in [129], but we will assume that the work
functions for our materials are approximately the same. This is, in fact, reasonable for the
Fe/Cr system. In this case we will assume that the transmission coefficient is always unity
and the reflection coefficient is zero. The remaining boundary conditions that come from
true interfaces are obtained in a similar manner. We find

g?t_u - Tﬂuggf_u + Rﬂ“ggfr” at z =-1b (108)
g‘l‘(il = TT‘“SE.::.“ + R‘HUSE(_U atz = +a s ) (109)
gy =TTVl | RIWGI® at 7= 4a (110)
gV = It o R = g (111)
gg{_tl = TT(“gE.ff’J + RM)SE? atz = —a (112)
ghy =THVglP 4 RIVGID gtz = —p , (113)
gl = THVgl¥ | RIVLIP gtz = b, (114)

The remaining boundary conditions occur at the artificial interface at z = 0. These change
the description of the spin quantization axis from one Pe film to the proper quantization
axis for the neighbouring Fe film. If the magnetizations of the two films make an angle &
with respect to each other, one obtains

ey = cosz(B/Z)g““ +sin®(9/2)get? atz=0 (115)
8l = cos?(8/2)glY + sin®(8/2)gi " atz =0. (116)

The set of equations (105-(116} provide 24 conditions for the 24 unknown F ‘L{E‘L ), veey ng‘“ .
These are solved for numerically. There have also been treatments for structures with
fewer interfaces where symmetry can be used to obtain analytic expressions for the unknown
coefficients. Such treatments are helpful in that analytic forms for the magnetoresistivity
can eventually be obtained [130].
Cnce all the values of F are known the values of g in each region can be evaluated and
then the current density in each region is found by using the equation

: 7\ 3 ,
_Jx(z)=2e(%3) fvxg(vz, z) d. BetY)

The current in the whole structure may now be calculated by integrating the current density
over z. This results in a relationship between the current and the applied electric field which
gives the resistance of the structure. The external magnetic field changes the resmtmty
simply by changing the angle 6 between neighbouring Fe films,

We comment briefly on the theoretical treatment. The original implementation of a
Sondheimer-Fuchs-type calculation did not include a mixing region but instead introduced
diffusive scattering parameters D) and D; to account for the asymmetry in scattering at
a sharp Fe/Cr interface [125]. It was pointed out that in the limit where the mean free
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path is much larger than the film thickness, the Sondheimer—Fuchs theory does not give
a complete description because it allows electrons near the interface to propagate parallel
to the interface for very long distances [131, 132]. This problem with the semi-classical
method was reflected in the fact that the semi-classical model had difficulty in obtaining
correct values for both the resistivity and the magnetoresistivity for the multilayer samples.
Typically if the magnetoresistivity was correct the resistivity was somewhat (20-30%) too
low. A proper quantum-mechanical-based treatment of the giant magnetoresistance effect
does not have this problem as it treats both bulk scattering and interface scattering in the
same fashion {132, 133]. Such a theory is however significantly more complicated.

Because of the simplicity of the semi-classical model various modifications have been
introduced into the original treatment in order to correct its deficiencies. One such
modification is the introduction of the mixing region as developed in [127] and reviewed
here. Alternatively, the inclusion of anisotropic conductivity due to grain boundary
scattering has also been shown to allow the Sondheimer—Fuchs-type models to calculate
both resistivity and magnetoresistivity correctly [134}. Recently two real-space quantum
calculations carried out with Kubo formalism have shown that the semi-classical model
is effectively equivalent to the quantum model if the Fe/Cr interfaces are treated in the
mixing region method as developed here [135,136). Thus with these improvements, the
semi-classical model appears to provide a qualitative and quantitative understanding of the
influence of the main parameters (mean free path to the electrons, thickness the magnetic
and non-magnetic layers, asymmetry in scattering of up spins and down spins) on the
magnetoresistance.

4.3. Behaviour of magnetoresistance as a function of structure

We now present some of the results of the semi-classical model and make comparisons
to experimental data. We have already shown experimental and theoretical results for
magnetoresistance as a function of applied field for a 120 A Fe/10 A Cr/120 A Fe
sandwich structure in figure 35. The variation of the angle # between the magnetizations
in neighbouring Fe films—necessary for calculating the magnetoresistance as a function of
field—is found by minimizing the sum of the exchange Zeeman and anisotropy energies
for this structure. The agreement between theory and experiment is quite reasonable. Other
experimental work [121] has shown that the magnetoresistance varies as cos2(8/2). This is a
particularly interesting result in light of the fact that the ransmission coefficients which arise
due to the change in the quantization axis also vary as cos?(9/2) as seen in equations (115)
and (116), The full theoretical treatment developed here shows that the correct angular
dependence is indeed quite close to a cos*(6/2) law.

It is interesting to see how the magnetoresistance depends on the structure. In figure 39
we present the results of a calculation for magnetoresistance as a function of the thickness
of the Cr spacer layer. Here we see a very rapid decrease of the magnetoresistance as the
thickness of the Cr spacer layer is increased. The physical reason for this is clear. The
mechanism outlined in figure 37 depends on a significant number of spin-down electrons
being able to cross the spacer layer since it is the difference in the scattering of spin-
down electrons for the parallel and antiparallel configurations which gives rise to the
magnetoresistance. Since the mean free path in Cr is fairly short (10-20 A) increasing
the Cr thickness means that most electrons will be scattered inside the Cr layer and the
magnetoresistance is significantly reduced.

In all cases we see that the superlattice has a significantly larger magnetoresistance
than the single sandwich structure. The reason for this is that we have assumed completely
diffusive scattering at the outer boundaries of the sandwich. This increases spin-independent
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Figure 39. Magnetoresistance as a function of Cr
film thickness. The magnetoresistance decreases rapidly
with increasing Cr film thickness for both the simple
sandwich structure and the superiattice. The parameters
for the calculation are Ape = 40 A, ope = L tre = 15 A,
Amix = 18 A, omix = 0217, tmix = 4 A, Agr =20 A, ey
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Figure 40. Magneloresistance as a function of Fe
film thickness for spin-dependent interface scattering.
Increasing the Fe film thickness merely increases the
number of scattering events within the films, thus
increasing the total resistance. The magnetoresistance is
here determined by spin-dependent interface scattering
and so the net effect decreases with increasing Fe
thickness. The parameters for the calculation are Ag.
=40 A, o = 1, Amix = 18 A, amiz =0.217, i =4 A,

region. A =20A0x=11iqg=4A

scattering and lowers the magnetoresistance. This seems to be in accord with current
experimental results. However it would be interesting to try various experimental treatments
to make the outer surfaces of the sandwich structure have a larger amount of specuiar
scattering. Then, in principle, one could obtain quite large magnetoresistances in the
sandwich as well as in the superlattice.

The results for the magnetoresistance as a function of the magnetic layer thickness are
more complicated. In this case the results depend strongly on whether the magnetoresistance
is due to spin-dependent bulk scattering or spin-dependent interface scattering. If one has
pure spin-dependent interface scattering then increasing the Fe thickness simply results in
more of the electrons being scattered within the Fe films. Thus the dominart contribution
to the resistivity comes from scattering which does not involve the electrons crossing from

- one Fe film to another, In this case the magnetoresistance monotonicaily decreases as
the thickness of the Fe layer is increased. This can be seen in figure 40. In contrast,
for primarily spin-dependent bulk scattering, increasing the Fe thickness initially provides
more opportunities for spin-dependent scattering. Thus in very thin Fe layers most of the
scattering occurs within the Cr and the magnetoresistivity is low. As the Fe becomes thicker
the mechanism outlined in figure 37 becomes possible and the magnetoresistivity increases.
Finally as the Fe thickness becomes significantly larger than a mean free path most of the
scattering is within one Fe film and the magnetoresistance again decreases. This explains
the behaviour of the magnetoresistance as a function of ¢z, seen in figure 41.

In figure 42 we explore how the magnetoresistance depends on the number # of unit
cells and on the mean free path in the ferromagnet. The structure is {Fe/Cr),/Fe. This
calculation is performed for the case where the scattering is primarily interface scattering.
As the mean free path is increased the number of spin-independent scattering events is
decreased while the number of spin-dependent scattering events is about the samé. Thus
the magnetoresistance increases. Also, as » is increased the effect of the spin-dependent
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diffusive scattering at the outer layers is reduced and the magnetoresistance is also increased.

4.4. Bulk and interface spin-dependent scattering and the influence of impurities at the
interfaces

There has been a fair amount of controversy about whether the spin-dependent scattering
found in experiments is primarily interface or bulk scattering. Theoretical calculations
127, 132] (which show excellent agreement with experimental results) for the Fe/Cr system
indicate that about 65-75% of the magnetoresistance arises from scattering at interfaces,
In contrast, NiggFezo/Cu multilayer structures have been analysed within a picture where
bulk scattering is dominant [134]. (This requires a scattering asymmetry py/p4 = U/15~
1/20 which is apparently reasonable for Permalloy.) Other models for Co/Cu superlattices
also invoke bulk spin-dependent scattering [137). However a recent experiment reports
dramatic enhancement of magnetoresistance in Nig; Fe;5/Cu multilayers by the addition of
thin Co layers at the interfaces, indicating that interface effects may be very important in
these systems {138]. It is fair to say that the general situation is not completely resoived at
this time, and some material combinations may display primarily interface scattering while
others seem to have a large component of bulk scattering as well. It is expected that careful
comparisons of experimental data to curves such as figures 3941 should be able to establish

whether bulk or interface scattering is dominant in a particular sample. Some work in this
direction has already been completed [134].
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The question of whether the magnetoresistance is due to bulk or interface spin-
dependent scattering impacts on another topic, the role of interface roughness in giant
magnetoresistance [139-142). Clearly if the magnetoresistance is primarily due to bulk
spin-dependent scattering then increasing interface roughness would increase the resistivity
in general and the magnetoresistivity would be reduced. In contrast, interfacial spin-
dependent scattering might reasonably be expected to increase with interfacial disorder
and the magnetoresistivity should increase, Such a result is in qualitative agreement with
both quantum models, where the giant magnetoresistance is a function of spin-dependent
random potentials at the interface, and semi-classical models, where more roughness could
result in a larger mixing region.

There are some experimental results indicating that the Fe/Cr system shows increased
magnetoresistance with increased interfacial roughness. In one study [139] the interfacial
roughness was inferred from x-ray diffraction measurements on sputtered Fe/Cr superlattices.
In particular, a larger intensity of the first Bragg peak arising from the superlattice structure
was used to indicate a system with less interfacial roughness. Increasing background Ar
pressure or decreasing Fe sputtering power generally resulted in rougher interfaces and an
increase in magnetoresistance.

An interesting attempt to confirm the picture of spin-dependent scattering as the origin
of the giant magnetoresistance effect involved the introduction of impurities at the Fe/Cr
interfaces [143]. These additional impurities have known asymmetries for scattering of spin-
up and spin-down electrons. If the spin-dependent scattering mechanism is correct, then
when the impurities have the same asymmetric scattering as Cr in Fe there should only be a
small change in the magnetoresistance as a functicn of impurity content. In contrast if the
scattering asymmetry of the impurity is opposite to Cr in Fe the magnetoresistance should
be significantly decreased. Of course such a picture assumes that scattering asymmetries
measured at low concentrations of impurities in butk Fe have some relevance to the high-
concentration region found at the interfaces.

Many different impurity elements have now been added to the Fe/Cr interface region in
experimental studies [143, 144]. The scattering asymmetry parameter @ = p,/py for these
elements as dilute impurities in Fe is given in table 1. Table 1 also summarizes the change
in the magnetoresistance when these elements are introduced at the Fe/Cr interface. Despite
the scatter in the asymmetry parameter, impurities which have values of o which are close
to those found for Cr do not degrade the magnetoresistance significantly. Impurities which
have a significantly larger than those found for Cr (i.e. weak asymmetry for 0.5 <a < 1 or
scattering asymmetry opposite to that of Cr for e > 1} result in significant reduction of the
magnetoresistance. Despite these intial indications that the scattering asymmetry found in
the previously measured values of « is important, we emphasize that the physical situation
in these experiments is quite complex and much work remains to be done.

The theoretical development presented in this section can be applied in a straightforward
manner to the calculation of magnetoresistance with impurities in the ‘mixing region’. In
this case one can start an estimation for the scattering asymmetry « in the mixing region
by using Matheson’s rule to find the total resistivity due to scattering from Cr and from the
impurity for spin-up electrons. This is also performed separately for spin-down electrons
and then the ratio p;/p¢ is formed. The effect of the impurities on the mean free path in
the mixing region may also be included. Theoretical calcuiations and experimental resuits
for the magnetoresistance as a function of impurity content are shown in figure 43. The
behaviour of Al and Mn as impurities are clearly quite different, with Al causing a very
rapid decrease in the magnetoresistance. Increasing Mn also causes a decrease, but it is
essentially the same decrease that one observes when the Cr layer thickness is increased.
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Table 1.

Inpurity element o = py/py  Effect on magnetoresistance  Reference
v 0.12-0.13 slow decrease [143,144]
Cr 0.17-0.37 slow decrease [143, 144]
Mn 0.09-0.17 slow decrease [143,144)
Mo 0.21 slow decrease [144}

Ru 0.37 slow decrease (144}

Ti 0.25-0.66 moderate decrease f144]

Al 3.6 rapid decrease [143]

T 90 rapid decrease f143]

Ge 62 rapid decrease [143]

This behaviour is consistent with the scattering asymmetries of Al and Mn impurities in
bulk Fe.

Figure 43. Magnetresistance of Fe/Cr multilayers as a function
of the thickness of impurity layer added at the Fe/Cr interface.
Circles and squares indicate experimental data from [143]. Full
and broken curves are theoreticat calculations from {127}. A clear
difference is seen between the results for Mn (which has « close
. v - v to the value for Cr) and Al (which has an « very different from
0 1 2 3 4 5 that of Cr). The different theoretical curves are based on the range
M-thickness/period (A} of assumed values for o for each impurity.

magnetoresistance (%)

4.5. Additional systems and theoretical treatments

The examples considered earlier dealt with compounds where the antiparailel amrangement
was introduced by some effective antiferromagnetic exchange between ferromagnetic films.
The giant magnetoresistance does not seem to depend on the antiferromagnetic exchange,
but rather simply on the possibility of changing from antiparallel orientation to parallel
orientation. A number of systems have been developed which show giant magnetoresistance
but without antiferromagnetic exchange between the ferromagnetic films. These include
sandwich structures where the antiparallel alignment is obtained by making the coercive
fields for the two different ferromagnetic films different [126, 145] and structures which are
fabricated in thin stripes so that dipolar fields cause an antiparalle] orientation [146].

A particularly interesting structure where antiparallel alignment can be obtained without
antiferromagnetic coupling between the ferromagnetic films is the so-called spin valve. Here
one has a sandwich where one ferromagnetic film, say the lower film, is exchange coupled
to an antiferromagnet [147-149]. In this case application of a weak external field can
readily change the direction of the magnetization for the upper ferromagnetic film, but the
magnetization of the lower ferromagnet is held antiparalle] to the field by the coupling to
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the antiferromagnet. At higher fields the magnetization of the lower film is also forced to
lie in the direction of the field, resulting in parallel alignment.

A number of microscopic theoretical approaches have also been employed to understand
the giant magnetoresistance in layered structures, These have concentrated on viewing the
system directly from an electronic band structure calculation [130-153]. Calculations have
been performed within the coherent potential approximation [151,152), One calculation
using the tight-binding method explicitly inciuded roughness effects at the interfaces [153].

Finally we note that giant magnetoresistance is not limited to layered structures but
has aiso been found in granular thin filros, particularly in Co-Ag [154-156] and Co-Cu
systems [157]. Giant magnetoresistance in magnetic granular films has also been discussed
theoretically [158]. The origin of giant magnetoresistance in these alloys is also attributed
to spin-dependent scattering. Here it is assumed that at low fields the magnetizations of
small particles of Co are randomly oriented and that at high fields the magnetizations are
all aligned with the external field. Thus ome has a similar orientational effect as in the
multilayer structure and the same mechanism can be used in both cases.

5. Conclusion

We have seen that the physics of magnetic multilayers and superlattices is clearly a rich
and varied field, with questions to chailenge the experimentalist and theorist alike. Our
presentation has been a survey of only some of the many interesting questions, and has out
of necessity completely ignored a number of equally fascinating phenomena.

One area of intense research has been concerned with how infrinsic magnetic properties
are effected by superlattice structures. Therefore questions about magnetic ‘dead’ layers,
enhanced magnetic moments, and coniributions to anisotropies from elastic strains and
interface effects have been addressed using a variety of experimental techniques and
theoretical band structure calculations {12,159-162]. The formation of anisotropies in
multilayer structures is particularly fascinating, since it appears possible to control the type
and orientation of the anisotropy with the superlafiice construction [163, 164]. Anisotropy
can also be responsible for magnetic phase transitions. For example an easy axis
perpendicular to the film can lead to a phase transition involving a reorientation of spin
direction from parallel to the film plane to perpendicular, This has been examined both
theoretically {165] and experimentally [166].

In order to complete our survey of this field, we cannot ignore the multitude of exciting
possible applications for many of the phenomena we have described. Some of the most
promising applications involve the giant magnetoresistance effect described in section 4. The
order of magnitude improvement in sensitivity over conventional magnetoresistance makes
this phenomenon attractive for a surprisingly large class of device applications. Among
the various devices which use magnetoresistance sensors are [167, 168] pressure sensitive
switches such as those used in electronic keyboards, magnetic read-out heads, magnetic
sensors such as those used in traffic control, and novel magnetic data storage devices [169].

The magnetization of magnetic materials is also an often vsed property for other classes
of applications. Long-lasting rewritable data storage materials are usually magnetic. New
materials constructed from multilayers composed of thin magnetic films allow for much
higher storage densities than possible with conventional magnetic media [170]). These are
particularly well suited for optical writing and reading technologies which use the optical
Kerr rotation effect [171]. There are obvious advantages to using a multifayer construction,
since this allows one to tailor the material properties to the specific device need. Some
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of the most relevant magnetic properties that can be controlled through the superlattice
geomelry are anisotropies and interlayer exchange. We have seen how simply modifying
the interlayer exchange can lead to radically different thermodynamic behaviour, an aspect
that is critical in the optical writing of data onto magnetic media.

Finally we comment on applications involving the optical properties of magnetic
superiattices. Superlattices constructed from antiferromagnetic materials are of possible
interest to communications and signal processing technologies for devices that work at
wavelengths in the infrared [88]. The optical response of antiferromagnetic multilayers and
superlattices at these wavelengths is determined by their dynamic magnetic response. Not
only are linear response characteristics important, but their non-linear response is also of
great interest [88]. Potentially useful features include a variety of different phenomena such
as harmonic generation and bistable transmission.

The short description given here of possible applications is by no means compiete, nor
is it appropriate to go too deeply into this subject here. We have instead presented only an
outline of some of the more interesting possibilities currently under consideration or even
development, and are certain that the future will bring even more.
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