
Magnetic multilayers: spin configurations, excitations and giant magnetoresistance

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys.: Condens. Matter 5 3727

(http://iopscience.iop.org/0953-8984/5/23/003)

Download details:

IP Address: 171.66.16.159

The article was downloaded on 12/05/2010 at 14:06

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/5/23
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. F'hys.: Condens. Matter 5 (1993) 3727-3786. printed in the IJK 

REVIEW ARTICLE 

Magnetic multilayers: spin configurations, excitations and 
giant magnetoresistance 

R E Camley and R L Stamps 
Department of Physics, University of Colorado at Colorado Springs, Colorado SpringS. CO 
80933-7150. USA 

Received 15 February 1993 

Abstract. We discuss some of the fundamental propenies unique to " i c  multilayers. 
Complex spin configurations are examined for many different systems and are shown to arise 
i" a simple comptition between exchange and Zeeman energies. The spin configurations 
found in multilayer systems determine macroscopic properlies such as the static susceptibility 
and magnetization, and can lead lo anomalous 8eId and temperature behaviour. We also 
discuss the dynamic behaviour of magnetic multilayers. Emphasis is placed on spin waves 
in magnetic multilayers with canted spin configurations and the softening of modes at magnetic 
phase transitions. Funhermore we show that spin wave excitations provide a powerful method 
for studying exchange interactions and spin configdons. Finally, the phenomenon of giant 
magnetoresistance in magnetic multilayers, where the resistivity of the metallic structure 011 be 
changed by over 60% at mom temperature, is discussed. Simple theoreiicd approaches are used 
lo understand and predict the propertfes of the multilayer systems and comparisons between 
Wry and experiment are stressed. 
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1. Introduction 

Magnetic multilayers have attracted significant attention recently because of a wide array 
of fascinating properties. The study of multilayer sysfems has been motivated by the idea 
that the properties of multilayer systems can be significantly different from those of any of 
the components. The reasons for this include: 

(1) Interface contributions-since interface effects usually penetrate at least a few layers 
into the bulk, in thin films the interface may profoundly influence the entire film. Repetition 
of interfaces as found in a multilayer aliows one to prepare a macroscopic bulk sample with 
properties dominated by the interfaces. 

(2) Collective contributions-the layered structure itself can allow new static 
configurations and new dynamic modes. In the m e  of a periodic multilayered system, 
a superlattice, the new periodicity introduces band gaps in the dispersion relations for the 
fundamental excitations in the structure. As usual, these gaps play a significant role in 
establishing the properties of the material. 

(3) The properties of the multilayer may be tailored-the multilayer structure is 
synthetically prepared. Highquality multilayers are fabricated with the thicknesses of 
the different materials varying from about 10 A to 200 A. By varying the microscopic 
structure., i.e. the layering pattern, the macroscopic properties can be altered to meet desired 
characteristics. 

Let us now examine these ideas in a little more detail, and in particular how these ideas 
are reflected in a magnetic multilayer. In figure 1 we show a schematic diagram for a 
simple magnetic superlattice consisting of altemating films of different magnetic materials. 
Because of the layered structure the magnetic moments (magnitude and orientation) can 
vary significantly from layer to layer. 

At the interfaces, everything can be and, in fact, is likely to be different. For example, 
the interface exchange constant can have a different sign from the exchange in the bulk of 
either magnetic material. This occurs in Fe/Gd and Co/Gd multilayer systems [ I ,  21 where 
Gd, Fe and CO are all ferromagnets, but the coupling across the Fe/Gd or interface 
is antiferromagnetic 13.41. The spin magnitudes for atoms at the interfaces can be quite 
different from those in the bulk and may be either enhanced or reduced. Anisotropy fields 
which in the bulk direct the spins parallel to the layers might at the interface direct the spins 
perpendicular to the layers [5,6]. 

In terms of collective features in equilibrium structures. one of the most interesting 
magnetic examples is found in systems that have magnetic unit cells which are larger than 
the chemical unit cells. A representative case here is found in GdN superlattices [7,8]. 
Although Y is non-magnetic, there is an effective antiferromagnetic interaction between 
blocks of Gd spins for certain thicknesses of intervening Y layers. With no applied field, 
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Figure 1. A schematic diagram for the unit cell of a simple 
magnetic superlattice consisting of altematbg films of different 
magnetic materials. We deal with svuctwes where all the spins in 
a layer are identical. but the magnitude of the spin S., in layer n, 
and its orientation may change from layer to layer. m e  exchange 
coupling behveen WO layers is also shown schematically. 

neighbouring Gd films have oppositely directed spins, i.e. we have something similar to 
a macroscopic antiferromagnet. If a magnetic field is applied parallel to the layers, the 
system goes essentially into the macroscopic equivalent of the antiferromagnetic spin-flop 
state. Here the spins in one Gd film are in plane but canted away from the applied field 
In a neighbouring film the Gd spins are canted in the other direction. The magnetic repeat 
distance in either case is two chemical unit cells. 

Collective features are also seen in the magnetic excitations [9-11]. Even in layered 
magnetic-nonmagnetic systems one may have a collective excitation of the system because 
the magnetic films interact via long-range dipolar fields. Of course in magnetichagnetic 
structures the spins interact via both the short-range exchange interactions and the dipolar 
fields. 

Magnetic materials are used in a variety of applications, including magnetoresistive 
heads and magnetic or magneto-optical recording. For these applications it is desirable to 
be able to adjust or tune features of the magnetic materials in order to achieve optimum 
results. Magnetic properties which can be altered by changing the layering pattern include 
coercive fields, saturation magnetization, magnetization as a function of temperature, static 
and dynamic susceptibility, and compensation points. 

In the next three sections, we present a brief review of some of the properties 
of magnetic multilayers. We stress simple theoretical approaches which are useful in 
understanding and predicting the properties of magnetic multilayers. Details of growth 
techniques and experimental characterization of magnetic multilayers can be found in a 
number of excellent review articles [12,13]. In section 2 we concentrate on the equilibrium 
structures for magnetic superlattices and how the experimental results can be understood with 
a simple mean-field model. Section 3 is devoted to a discussion of magnetic excitations 
in superlattices, while section 4 discusses an exciting surprise in magnetic multilaye- 
the phenomena of giant magnetoresistance. Finally there are some concluding remarks in 
section S. 

2. Equilibrium spin configurations 

By now many different layered sbuctures of magnetic and non-magnetic materials have 
been fabricated. Examples (meant to be illustrative rather than exhaustive) of these include 
multilayers constructed by alternating layers of: 

(1) ferromagnets with 
non-magnets--lrliNo [lo, 141. Fe/Si [IS], Gd/Y [7,8], Co/Ru [I61 
ferromagnets (ferromagnetic interfacial coupling)-Fe/Ni [ 171 
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ferromagnets (antiferromagnetic interfacial couplingkFdGd [ 18-24], Co/Gd [2] 
helimagnets-GdDy C25.261 
antiferromagnets-Fe/Cr [27] 

(2) helical or conical with non-magnets-DyN [281, Hoff [131, ErN [291; 
(3) antiferromagnets with antifemmagnets-FeFdCoFz [30] and FesO4/NiO [31]. 

These classifications can be somewhat misleading. For example bulk Y is nonmagnetic, 
but, as mentioned earlier, when sandwiched between Gd or Dy films, Y mediates an 
effective exchange interaction between'the magnetically ordered films. Similarly, bulk Cr is 
antiferromagnetic (technically one has a spin density wave in Cr but the antiferromagnetic 
structure is stabilized with the addition of a few impurities); however, this does not appear 
to play a fundamental role in the Fe/Cr superlattices. 

The variety of magnetic materials used as building blocks in the multilayers has led to 
an enormous range of resulting magnetic behaviour. Essentially these structures form a new 
class of magnetic materials with properties significantly different from their constituents. 
The basis for most of these new properties is the magnetic structure of the multilayer. Thus 
is this section we explore a simple theoretical technique for determining equilibrium spin 
configurations. This technique is then applied to some of the more interesting magnetic 
multilayer structures. In particular, we discuss bulk structures of GdN, Fe/Gd and GdDy 
for which both theoretical and experimental results are available. We also look at changes 
in these structures which appear in finite superlattices due to surface effects. 

2.1. Theoretical development 

The equilibrium spin structure is, of course, determined by the condition that the free 
energy should be a minimum. In principle there could be many contributions to the total 
free energy coming from, for example, the exchange energy, the Zeeman energy of the spins 
in an external field, magnetoelastic energy, and anisotropy energy. Thus the Hamiltonian 
for the system is of the form 

H = Hex -I- H k m  + Hm + H d s  (1) 

where 

is the exchange energy; H m  is the magnetoelastic energy and Hds is the anisotropy energy. 
Finally, the energy of the individual spins in the presence of a magnetic field is given by 

Here the sums involve the spins at sites i and j .  In the systems to be considered throughout 
we will assume that all spins within an atomic layer lie in the plane of the layer and all 
point in the same direction. As we will see explicitly below this allows a treatment where 
one layer interacts with another in contrast to sums over all individual spins. 

Simple considerations about how these various terms change as the number of layers 
in a unit cell is changed allow us to understand one reson for the great adjustability 
of the magnetic multilayer structure. As an example, the interface exchange energy is 
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essentially independent of the number of layers of spins within each film. In contrast the 
Zeeman energy ought to scale nearly linearly with the number of layers of spins. As a 
result, in thin films interface exchange energy plays a dominant role in determining the 
equilibrium structure while for thicker films the Zeeman energy is also significant. This 
competition between interface exchange energy and Zeeman energy can lead to a variety of 
unique phase transitions between different equilibrium smctures which are quite sensitive 
to extemal applied fields. 

We review 
here a simpler model which has been used to study equilibrium structures and 
explain magnetization data in several superlattices 132-391. We neglect anisotropy and 
magnetoelastic energies and study a Hamiltonian with an effective exchange coupling 
between spins in different layers. In this case the Hamiltonian can be written 

Clearly the Hamiltonian of equation ( I )  can be quite challenging. 

where J,,, is the effective interlayer coupling between spins in layers n and n + m and g,, 
is the effective Land6 g factor for the spins S, in layer n. Here S, represents all the spins 
in a layer since they are presumed parallel. Also in this expression we explicitly have an 
exchange interaction between spins in the same layer (m = 0), and spins in next (m = f l )  
and next-nearest (m = f 2 )  layers. A number of potential complications exist even in 
this simplified Hamiltonian. For instance the Hamiltonian needs to be modified if the two 
materials have different densities or different crystal structures. However we neglect these 
effects in our simple treatment. 

The above Hamiltonian can be solved, approximately, by several methods. One can 
convert the problem into a continuous system [33,40-42] and obtain analytic solutions 
in the T = 0 limit where one can assume a constant amplitude for the magnetic moments. 
However such an approximation breaks down at higher temperatures and when the structure 
changes rapidly from layer to layer. A different, more general, method for finding the ground 
state of the above Hamiltonian is the iterative energy minimization scheme described below. 

We first describe the iterative energy minimization method for the T = 0 case. One 
stiuts with an assumed set of values for the angular position of each layer of spins. In many 
cases the spins will lie in a plane parallel to the interfaces (this reduces the demagnetization 
energy) and for simplicity we will use this assumption. It is also assumed that all spins 
in each layer are equivalent. Due to exchange coupling, the energy of the spins in any 
given layer depends on the orientation and magnitude of the spins in the nearby layers. An 
arbitrary layer n, of spins, can be regarded as having an energy E, where 

or in terms of the angle 0, that the spins in layer n make with the applied field 

En = Jnm&Sn+m cos(& -en,) - gnlLLgsnHo cos (en). (6)  

Thus at T = 0 a single variable for each layer, e,, characterizes the magnetic sbucture. This 
energy is minimized by choosing the angle 6, generated by the minimization condition 

m = O , i l . i Z  

aEniaen = 0. U) 
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This procedure can be viewed as rotating the spins in the nth layer to lie parallel to their 
effective field, a process which reduces the layer's energy. We can then find a configuration 
as follows: a different layer is then randomly chosen and the spins in that layer are rotated 
to lie in the direction of the local effective field. The process is continued until one has a 
self-consistent, stable state where all the spins are aligned with the effective fields produced 
by the neighbouring spins. Since the method only minimizes the energy locally, different 
initial configurations may lead to different self-consistent final states. The ground state is, 
of course, the stable state with the lowest energy for the entire structure. 

At finite temperatures, both the direction and thermal averaged magnitude of the spins in 
each layer must be specified. In this case the iteration procedure is slightly different A layer 
of spins is first rotated into the direction of the effective field, and then the spin's thermal 
averaged magnitude in that direction is found through the use of the Brillouin function 

R E Camley and R L Stamps 

(S") = S,BS"(X)  (8 )  

where 

X = gnPBSnHn/kT. (9) 
The Brillouin factor is given by 

Bs(x) = [(2S + 1)/2S]coth[(2S + 1)~/2S]  - (112s) c0th(~/2S). (10) 

Here (S.) is the thermal average of the spins in the nth layer in the direction of the effective 
field. H,, is the effective field acting on layer n. The effective field is now given by 

Note that in the effective field the spins in the neighbouring layers are replaced by their 
thermal averaged magnitudes. Again the entire operation is iterated through all spins until 
a self-consistent state emerges. 

Now the ground state is the one with the lowest free energy. At T = 0 the energy is 
nor simply given by summing over the individual layer energies, i.e. 

since this counts the exchange energy twice. Similarly, for T # 0 one must be careful in 
evaluating the free energy to avoid counting the average exchange energy twice. In the 
mean-field approximation the partition function for the spins in layer n is given by 

2, = {sinh[(ZS. + l)gnCL~Hn/2kr]}/Sinh[gnCL~H,/2kT]. (13) 

The total partition function is then 

Finally, the free energy for the entire structure is given by [43] 
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where the second term on the right eliminates the ‘double counting’ of the average exchange 
energy. 

In practice the iteration procedure requires of the order of 1ooO-1OOooO iterations per 
layer to reach a converged state. It generally takes a larger number of iterations to find 
a converged state near a phase transition. Of course, the final state may only be a local 
minimum and it is not guaranteed that the hue ground state will always be found by this 
method. Nonetheless, if one takes a sufficient number of different initial sets of angles, the 
method seems to discover all the lowcnergy stable states. 

We note in passing that this mean-field theory is really the simplest possible 
approximation that takes into account a layer-by-layer variation spin orientation and thermal 
averaged magnitude. Such methods have been used previously in thin-film calculations [U]. 
Improvements would include Bethe-Peirels-Weiss methods or Monte Carlo techniques. 
However these methods involve significantly larger computational investment 

2.2. Comparison of iheoretical and experimental results for bulk superlattices 

Among the most interesting of the magnetic superlattice structures are those which involve 
some antiferromagnetic coupling. In this case the exchange energy favours some kind 
of antiparallel alignment while the Zeeman energy due to an external field favours a 
ferromagnetic-like arrangement As a result, these structures can display a fascinating set 
of phase transitions, with the transition temperatures and fields controlled by changing the 
layering pattern. We therefore concenrrate on superlattices with antiferromagnetic coupling. 

One of the ‘simplest’ layered systems with an interesting magnetic structure and a 
fascinating dependence on layering pattern is the Gd/Y superlattice. Although bulk Y is 
normally non-magnetic, in the Gd/Y superlattice the Y layers mediate an effective exchange 
interaction between neighbouring Gd films. Yafet and co-workers [45,46] has shown that 
this is essentially due to the RKKY interaction. The RKKY interaction is often invoked 
for discussions of magnetic impurities in a non-magnetic host In this case, one magnetic 
impurity produces a spin polarized electron cloud around itself. This spin polarized electron 
cloud can then interact with a second magnetic centre to produce a long-range exchange 
interaction which depends on the distance R between the two magnetic impurities. For 
large R and a free electron gas, the RKKY exchange has the functional form 

where kF is the Fermi wavevector. The key point here is that the exchange interaction is 
oscillafoiy, depending on the distance between impurity spins. For metals the oscillation 
period is relatively short, of the order of a few A. Instead of just considering two 
impurity spins, Yafet considered two planes of impurity spins and showed that the exchange 
interaction was still oscillatory. In this case the coupling depends on the distance z between 
planes and has the form 

Clearly, the exchange still oscillates as a function of distance and the expected oscillation 
period is still only a few A. 

The oscillatory behaviour of the exchange as a function of spacer film thickness in 
G W  superlattices was beautifully demonstrated in experiments by Kwo et a1 [7]. Figure 2 
shows magnetization as a function of Y thickness for a series of Gd/Y samples. The large 
values of magnetization occur for Y thicknesses where the coupling between Gd films is 
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0'; ' I O  ' M I " 30 
NIIATOMIC LXYERSI 

Figure 2. Experimental resulls on Gd/Y multilayen 
showing alternation of the zerwfield magnetization 
(top) and the held required for saturation (boltom) 
as a function of thickness of Y. Low magnetizations 
and high saturation fields indicate antifemmagnetic 
coupling. (After [71). 

Figure 3. Schematic spin flop of GdN. or FeKr- 
ryp structure. The spins in neighbouring films attempt 
to be antiparallel to each other but are canted in the 
dimtion of the applied field. In Ihe high-tempnture 
configuration the thermal avenged magnitude of the 
spins is lower at the edges of the ferromagnetic films. 
'This results in a smaller canting angle 0 for the same 
applied field. 

ferromagnetic, and when the coupling is antiferromagnetic the magnetization is nearly zero, 
indicating that the Gd spins in neighbouring films are antiparallel. 

Recently a series I471 of ferromagnetic/non-magnetic (FdCr [27], Co/Ru [la], Co/Cu 
1481) structures has been studied, where the non-magnetic space layers mediate an effective 
exchange between the magnetic layers. These structures were fabricated by a number of 
different methods including MBE and sputtering. As in the case of GdN the exchange is 
ferromagnetic or antiferromagnetic depending on the thickness of the spacer film. However 
in this case the oscillation length is typically of the order of 10-12 A. with some periods 
as large as 18-20 A. Much shorter-range oscillations (2-3 A) have also been observed in 
carefully prepared samples. Despite the differences in the length scale, coupling in these 
systems has also been attributed, at least in part, to ~KKy-type interactions. A detailed 
discussion of the origin of the coupling is beyond the scope of this paper 149-531. 

When ferromagnetic films are antifemmagnetically coupled, through a spacer layer for 
example, application of a magnetic field produces some interesting results. Because of the 
competition of interface exchange and Zeeman energies [7,8]. the ground state is not a 
macroscopic antiferromagnetic state where the ferromagnetic films are strictly antiparallel. 
Instead the equilibrium structure resembles a macroscopic spin-flop state which represents 
a compromise between exchange and Zeeman energies. The resulting configuration is 
illustrated in figure 3. An increase in the extemal field reduces the canting angle 0 and 
changes the net magnetic moment of the structure. The magnetization is thus very sensitive 
to applied fields and also to temperature, which plays a strong role in determining the 
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Figure 4. Magnetization as a function of 
temperature for GdjY superlattices: (a) theory 
and (b)  experiment Experimental results are 
from 171. The increase in magnetization as 

0 100 200 MO temperam increases is shown schematically in 
0 

figure 3. T IKI 

average interlayer exchange energy. 
In figure 4 we present theoretical and experimental results for the magnetization as 

a function of temperature for GdN superlattices [54]. We see an unusual temperature 
dependence with a magnetization that increases as temperature is increased. This can be 
readily understood by looking at the exchange coupling of the Gd spins. The Gd spins on the 
interior are strongly coupled to each other compared to those on the exterior which are only 
weakly coupled on the Y side via the RKKY interaction. When the temperature is increased, 
the Gd spins in the interior thus retain a larger thermal averaged magnitude than those on the 
exterior since they see a larger effective field. As a result, the interface exchange energy 
(which should scale as J ~ ( S G ~ - . ~ ~ ~ ~ ~ ) ~ )  is rapidly reduced and the competition between 
exchange and Zeeman energies now favours a state where the Gd moments point more 
closely along the extemal field. This is automatically included in the iterative calculation 
and the result are illustrated schematically in figure 3. Thus even though (Sa) decreases 
as the temperature increases, the change in orientation of the Gd spins is sufficiently large 
that the magnetization increases. As T continues to increase the (Sod) begin to decrease 
very quickly and the magnetization decreases (more or less as single Gd films). The field 
dependence of the magnetization is also striking. Here we have an ordered state which 
displays a significant change in magnetization as a function of field. 
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Several other systems have been investigated both experimentally and theoretically. 
One such system is composed of altemating femmagnetic films which couple antiferro- 
magnetically at the interfaces (i.e. Fe/Gd or Co/Gd). Such antiferromagnetic coupling is a 
reasonably general feature of transition metaurare earth systems. There are three important 
phases in the F W  system [33]: 

(1) The Gd-aligned phase-the structure here has Gd fully aligned with the applied field 
and the Fe spins antiparallel to the field This phase occurs when the net thermal magnetic 
moment in the Gd films is much larger than that in the Fe films. 

(2) The Fe-aligned phase-here the Fe spins are aligned with the field and the Gd spins 
are oppositely oriented. This phase occurs when the net magnetic moment in the Fe films 
is larger than that in  the Gd films. 

(3) The twisted (or canted) phase-here the spins in each layer make a different angle 
with respect to the applied field. In this phase, the spin configuration can vary from 
something similar to the spin-flop phase in an antiferromagnet to a configuration similar to 
that in a domain wall. This phase occurs typically when the net magnetic moments in the 
Fe and Gd films are close to each other. The phases are illus!mted in figure 5. 

Gd .aligned twisted Fa. allgned 

zz3 c_ 
cq 
c_ 

c_ 
Ca 

s -  
F* = 
Gd 

Figure 5. Schematic illusmtion of phases of FdGd stIuctm. 
The Fe-aligned slate often DCCUIS at higher lernperaaues when 
the thermal averaged marnitude of lhe Gd IS significantly - Ho reduced. 

As we have seen, the different phases arise from a competition between Zeeman and 
exchange energy. For small magnetic fields the Zeeman energy is less important and the 
exchange energy generally favours the aligned states. Clearly the films with the larger 
moment will align parallel to the field. This introduces a strong temperature dependence 
since the thermal averaged magnetic moment in Gd changes rapidly compared to that of 
Fe since the Gd spins see a smaller effective field. For moderate fields both exchange 
and Zeeman energy are important. This favours the twisted state. Changes in the layering 
pattern can make significant changes in the field-temperature (h-r) phase diagram since the 
balance between exchange and Zeeman energies depends critically on relative thickness. In 
figures 6 and 7 we present theoretical phase diagrams for a F e w  superlattice with a unit 
cell of 13 Fe/5 Gd and a second diagram for a system with a unit cell of 14 Fe/4 Gd. We 
see that the addition of just one layer produces a dramatic shift in equilibrium properties. 

The microscopic phases are reflected in such macroscopic measurements as magnetiza- 
tion as a function of temperature and static susceptibility. In particular the twisted phase 
displays a very large susceptibility. The reason for this is clear. Susceptibility measures the 
ability of the spin configuration to change due to an external field. In the aligned state only 
the magnitudes can change. In the twisted state both the magnitudes and the orientations 
of the spin can change and this leads to a significantly enhanced susceptibility. Note also 
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Figure 6. hhgnetic pmperties of a 13 laym Fd5 layers 
Gd multilayer: (U)  phase d i a m  (b )  net magnetic 
moment; (c)  static susceptibility at a given extemal 
field. I is the reduced temperature given by TIT.-cd 
and k is the reduced field given as a haclion of the 
exchange field. (After 1341.) 

Fire 7. Magnetic pmperties of a 14 layers Fd4 layers 
Gd multilayex ( U )  phase diagram; (b) net magnetic 
momens (c) stalic susceptibility at a given external 
field I is the reduced temperature and h is the reduced 
field as in figue 6. Note significant changes in the 
mule. as wmpared to the structure shown in figure 6. 
(After [34].) 

H (emulcc) 

b 0 . 2 5  
tzo.0 
tr0.13 

0 
0.02 0.06 0.11 

h 

Figure 8. Magnetization as a function of applied field for ( U )  FdGd superlattice (theory) and 
(b)  CoEd superlattice (experiment). In the theoretical plot I is the reduced temperature and k 
is the reduced magnetic field as in figure 6. (Theory after [34] and experiment after [Z].) 

that the behaviour of the net moment as function of temperature is very different for the 
two samples. 

In figure 8 we compare theoretical results 1341 for M versus applied field for an Fe/Gd 
superlattice with experimental results for a Cow superlattice [2]. (The Co/Gd superlattice 
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has essentially the same physics as the Fe/Gd structure.) We see good qualitative agreement 
between the experiment and theory and can clearly distinguish phase changes from aligned 
states (Stold nearly constant) to twisted states (S changing rapidly with field). 

Theoretical results for the magnetic phase diagram of the Fe/Gd system were presented 
in [33 and 341. In addition it was shown that the critical field necessary to cause 
a transition from the Gd-aligned phase to the twisted phase at a fixed temperature 
decreased significantly as the thickness of the Gd layer was increased. Recently systematic 
experimental explorations of the Fe/Gd system have been initiated by several different groups 
[18-24,55,56]. These studies have confirmed the magnetic phase diagram (as can be seen 
in figure 9) and the dependence of the critical field on the thickness of the layers, and have 
verified that the susceptibility is largest in the twisted state. An interesting feature which 
emerges from these studies, some of which made direct comparisons between experiment 
and theory, is that the Gd films in the superlamices behave as if their magnetizations ~ I C  

reduced by 2C-259'0 from bulk Gd. The reason for this is not yet known. 

R E Camley and R L Stamps 

Figure 9. A companson of experiment (A)  and theory 
(full curve) for the magnetic phase diagram of F a d .  
The calculalion used a value for the Gd magnetization 
which was reduced by abOul204. from lhat of bulk Gd. 
(After 1561.) 

Figure 10. Experimental (filled circles) and theoretical 
(full CUN~S) Mossbauer mulls for FdGd. X is the 
ratio of the intensities of two M6ssbauer lines seen in 
the lypical sexluplel specmm for Fe. In a45' geomeky 
X can be related to the angle lhat the Fe spins make 
with the exremal field. X = 4 indicates that the Fe 
spins are either parallel or antiparallel io the applied 
field. X = 1.33 indicates the Fe spins are perpendicular 
to the applied field. The temperatures conespond !n the 
vertical lines in figw~, 9. (After 1561.) 

An experimental group in France used a clever variation of Massbauer spectroscopy to 
obtain the microscopic orientation of the Fe spins with respect to the extemal field 1241. 
In a typical Massbauer spectrum for Bcc Fe one sees six peaks. These peaks occur with 
relative intensities 3:X:I:I:X:3. The factor X depends on the angle between the y-ray 
direction and the direction of the magnetization in Fe. Using a 45" incident geometry, X 
may be related to the angle between the Fe moments and the applied field. One can show 
that in this geometry X = 4 indicates that the Fe momen& are either parallel or antiparallel 
to the applied field. At X = 1.33 Fe is perpendicular to the applied field. A comparison of 
experimental and theoretical results for X as a function of magnetic field has recently been 
reported for an Fe(42 A)/Gd(84 A) superlattice and typical results are shown in figure 10. 
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Here for T = 100 K and at low field one sees that X 2 4 indicating that the Fe moments 
are antiparallel to the applied field. As the field is increased the phase transition to the 
twisted state occurs around H = 2.5 kG and the Fe moments begin to turn toward the 
direction of the applied field. At H = 8.5 kG X = 1.45 and the Fe moments are practically 
perpendicular to the field. The behaviour at T = 240 K is significantly differenL In this 
case X is generally near four and the Fe moments are nearly aligned with the external field 
over the entire range of applied field. The agreement between theory and experiment is 
quite good indicating that this system is reasonably well understood 

We describe one final bulk system, a GdDy superlattice, in detail. Bulk Dy is a very 
interesting material which develops a helical magnetic order below 178 K [57]. A second 
phase transition occurs in bulk Dy at around 85 K when the magnetic ordering changes 
to a ferromagnetic state. In thin films the phase transition to the femmagnetic state is 
suppressed [28,291. As might be expected, the Dy behaviour in the superlattice structure is 
also significantly altered from its behaviour in the bulk. 

In figure 11 we show the experimental M ( T )  curves for four different superlattice 
structures. Here we see that as the temperatun? is lowered, the Gd slabs first become 
ferromagnetically ordered at Te The values of Tc are slightly depressed compared to bulk 
Gd where T, = 292 K. We find T, = 250 K for superlattices with five Gd layers in a unit 
cell and Tc = 290 K for superlattices with ten Gd layers in a unit cell. This decrease is due 
to finite-size effects and is in good agreement with earlier results. Upon further reduction 
of temperature a local maximum in M ( T )  occurs followed by a minimum, which occurs 
at a temperature between 100 K and 200 K depending on the specific superlattice bilayer 
period. Finally, M(T) increases as the temperature is lowered toward 10 K. Since bulk Dy 
develops a helical order at TN = 178 K, the minimum followed by the sharp rise of M ( T )  
in the Gd/Dy superlattices is undoubtedly a consequence of the complex spin Structures of 
the Dy slabs and the Gd slabs. We note that for the 5 Gd/5 Dy and IO Gd/5 Dy samples, 
one recovers a very large fraction of Ms(0) with a field of only 0.1 kOe at 10 K, and thus 
the spin structure must be very nearly ferromagnetic. However in the 5 WlO Dy and 
10 Gal0  Dy samples, where the thickness of the Dy slabs is doubled, the magnetization 
at 0.1 kOe is significantly less than Ms(0). Neutron scattering results [26] at 80 K confirm 
this picture. For the 5 Gd/5 Dy and 10 W5 Dy samples one sees a primary magnetic 
periodicity of the chemical unit cell. This is consistent with a ferromagnetic state. For the 
5 Gal0 Dy and IO Gd/lO Dy samples, one sees a primary periodicity associated with a 
doubled magnetic unit cell. In every case there is a doubled unit cell at the minimum in 
the magnetization. This is consistent with an altemating helical state where the doubled 
unit cell contains Dy films which show opposite helicities in their magnetic structure. The 
alternating helicity state is described in more detail later. 

In order to describe the helical ordering in Dy, one must include both nearest-layer and 
next-nearest-layer exchange interactions. At and A2 respectively [57]. As is well known 
the tum angle @ of a bulk helical structure is given by the equation cos 0 = Ar/(-4Az). 
In both bulk Dy and Dy films, this tum angle varies with temperature. As is common, we 
assume that this variation can be described by a temperature-dependent value for A2 [57]. 
The resulting turn angles are remarkably close (within a few percent) to the bulk values for 
temperatures above the bulk phase transition [58]. Earlier work has shown that the bulk 
phase transition to a ferromagnetic state is suppressed in thin Dy films, and our assumptions 
for the superlattice values are consistent with this. The assumed values for the turn angle 
as a function of temperature are shown in figure 12 along with the values known for bulk 
Dy samples. The same variation of A2 with temperature is used for all four structures 
considered here. 
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Figure 11. Magnetization as a function of temperature 
for GdJDy, superlattices. ZFC indicates Ihe results 
for the Eem-fieldcooled pmcess while K' means field 
cooled. (After K2.51.) 

Figure 12. Turn angle in Dy as a function of 
temperam for bulk Dy compared to values used in 
the theoretical calculations. 

For simplicity, anisotropy is neglected. This probably results in some differences 
between theory and experiment, particularly in the details of the magnetic structure. For 
example this might cause the structure to be asymmetric about the applied field as discussed 
earlier in superlattices with antiferromagnets [391. However, as we will see, all the major 
features of the magnetization curves seem to be reproduced properly, so this is probably 
not too severe an approximation. 

The mean-field iterative method described above is used to find the ground state structure 
for this system. Depending on the initial set of angles chosen, a variety of final stable states 
can emerge. These include a ferromagnetic phase where all spins line up along the external 
field, an alternating-helical phase (if the helicity is positive in one Dy film it is negative 
in the next Dy film), a fan phase and an 'antiferromagnetic phase'. Typical structures for 
some of these phases are illustrated in figure 13. 

The alternating-helicity state is particularly interesting in that the magnetic unit cell is 
twice the length of the chemical unit cell. This alternation of helicity generally allows the 
Gd spins to lie near the direction of the applied field. In contrast, a continuous-helicity state, 
where the helicity in each Dy film has the same sign, would result in Gd spins, on average, 
having no particular orientation with respect to the field. Thus the alternating-helicity state 
produces a significant gain in Zeeman energy. Since the helicity within a single Dy film 
is maintained there is also not much cost in exchange energy. This is in contrast to a fan 
phase where the helicity within a film is reversed. The existence of the altemating-helicity 
state is a dramatic example of a collective superlattice effect, 

The theoretical results for M(T)  are presented in figure 14. The comparison between 
experiment and theory is really quite good with a slight exception for the 10/10 structure. 
We see from the theoretical magnetization results that the altemating-helicity phase plays 
a very important role. As the temperature increases the magnetization in this phase first 
shows a rapid decrease and then an increase. This reflects, in part, the change in tum 
angle as a function of temperature. At the minimum in the magnetization the Gd spins in 
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Figure 13. Illustration of the alternating-helicily 
phase, the fan phase and the antifemmagnetic phase 
in GdDy superlaItices. (After [251.) 
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neighbouring films are neaiy antiparallel to each other. By changing the number of Dy 
kayers one also changes the net angle between the Gd spins in neighbouring layers and as 
a result the minimum in M ( T )  occurs at a different temperature. Here we see that the 
minimum is shifted by about 100 K by changing the number of Dy layers from five to ten. 

2.3. Surface phase tronsition 

We now mm to the influence of the outermost surfaces of the magnetic structure of a finite 
superlattice. The surface layer plays a special role in the magnetic structure simply because 
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it is exchange coupled to other spins on only one side. Thus in the competition between 
exchange and Zeeman energies, the influence of the exchange energy is reduced and it is 
easier for an external field to direct the surface spins. As the outermost layer of spins tries 
to tum toward the field direction, the remaining layers must adjust their orientations as well. 
These surface-induced phase transitions can occur at magnetic field strengths well below 
that required for the equivalent bulk phase transition [59,60]. Also the reconstructed state 
can have surprisingly large penetration depths into the bulk of the superlattice. 

As a first example of a surface phase transition in a superlattice we consider a finite 
Fe/Cr- or GdjY-type smcture. We assume that the temperature is low enough that all spins 
have a thermal averaged moment equal to their maximum value. Furthermore we assume 
that the exchange coupling between atomic layers is sufficiently strong that the spins within 
a film are rigidly coupled together. These assumptions are reasonable for Fe/Cr or Co/Ru 
superlattices at room temperature. 

For in infinitely extended FeICr-type structure in an external field one expects a canted 
configuration as discussed earlier. From energy considerations, it is easy to show that the 
uniform canting angle is given by the equation 

R E Camley and R L Stamps 

C O S C U ~  = HoMI4.l (18) 

where M is the net magnetic moment of a film and J is the interface exchange energy. In 
a finite multilayer, however, this uniformly canted state is not stable [60J. As mentioned 
above, the reason for this is that the outer layers of the finite structure experience only half 
the exchange coupling of the interior layers and thus are easier to turn toward the applied 
field. 

Stable ground state configurations for finite Fe/Cr type multilayers have been found 
[60] using the numerical method outlined above. These states are compared to the uniform 
canting state in figure 15. The structure in figure 15(h), the low-field case, is quite complex. 
The outermost spins are twisted into the direction of the field as expected, but the spins 
of the second layer are actually turned farther away from the field than they would be in 
the bulk configuration. This alternation continues as one progresses into the bulk of the 
superlattice, but the amplitude of the deviation decreases with increasing distance from the 
surface. The main difference between the configurations of figure 15(b) and that found in 
figure 

The surface twist states illustrated in figure 15@) and (c) reduce the energy of the 
structure as compared to the uniform canting state by lowering the Zeeman energy. (As a 
result the surface twisted states have a slightly higher magnetization than does the uniformly 
canted state.) However the twist also results in a small increase of exchange energy. The 
resulting structure is as usual a compromise between exchange and Zeeman energy. It 
is worthwhile to compare these non-uniform canted structure discussed here to the very 
different case of non-uniform canting found in a domain wall. For example, the width 
of a domain wall in a ferromagnet is governed by the competition between the exchange 
energy and the anisotropy energy. The exchange energy can be minimized by spreading the 
canting out over many layers of spins and thus favours a very extended wall. In conhast, 
the anisotropy energy is minimized when spins point in the easy direction, thus favouring 
a narrow wall. In the surface-twist problem the competition is between exchange and 
Zeeman energies, and there is also the additional freedom of having two sublattices. This 
allows new kinds of state to occur when minimizing the total energy. The alternating spin 
configuration seen in figure 15(b), for example, has the exchange energy between layers 
of spins alternately increase and decrease as one moves through the multilayer. This extra 

is that there is no alternation in the high-field configuration of figure 15(c). 
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Fwre 15. Examples of possible configurations for a 
multilayer composed of antifermmagnetically coupled 
ferromagnetic thin films. The magnetization of each 
lhin film n lies in lhe plane of the film and is ipresented 
by an m w :  it makes an angle 8. with the external 
field Ho. (a )  The 'bulk' stale, where 8" is the same 
for all films. (b)  and (c) Configumions for a finite 
multilayer, with lhe upper parf of the diagram being 
the fop surface of the multilayer and the lower part 
the bottom surface of the multilayer. The bmken lines 
in (b)  and (c )  show the 'bulk' configuration for these 
cares. Note Lhat for (6) the ouWnost spins are turned 
into the direction of the field, but that IAe next layer has 
the spins m e d  away from the field when compared lo 
the bulk configuration. (After [so].) 

Figurr 16. Results of lhe variational calculation for 
the penetntion length L as a function of applied,field. 
The full c w e s    pa sent the results of the variational 
calculaIions and the filled circles are the equivalent 
results from the numerical calculation. Note the rapid 
increase in L at both high and low fields. (After [601.) 

degree of extra freedom allows the width of the non-uniform canting region to vary in an 
interesting manner as a function of applied field. At low fields the non-uniform region is 
very large; for moderate fields it is quite small and then for larger fields the width of the 
non-uniform regions is again large. 

A variational calculation [60] gives a simple result for the width of the non-uniform 
canting region. We define a dimensionless measure of the applied field as 

h = HoM/IJI.  (19) 

The length of the non-uniform surface twist is then given approximately by the expression 

L = l +  - - I  

where L is the number of films involved in the surface twist. This result is only valid for 
small h. A comparison of the variational results for L with the results carried out withiin 
the iterative model discussed above is presented in figure 16. 
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A second system which displays a surface phase transition is a finite Fe/Gd superlattice. 
In this case the surface phase transition depends on the nature of the outermost film [591. 
We consider an F e w  system constructed so that at low temperatures and fields the system 
is in a Gd-aligned phase. If the outermost film is Fe then increasing the field causes a phase 
transition from the Gd-aligned state to a surface-twisted state. This transition nucleates at 
the surface and occurs at a field which is about five times lower than that required for the 
bulk transition. In contrast, if the outermost film is Gd the phase transition from the aligned 
phase to the twisted phase begins in the interior of the sample. 

It is easy to understand why the structure with Fe on the outside should have a surface 
phase transition. In the Gd-aligned phase the Gd spins point along the external field and 
the Fe spins are antiparallel to the external field. Fe spins in the interior are strongly held 
antiparallel to the external field by the antifemmagnetic coupling to the Gd spins on both 
sides of the Fe film. In contrast+ Fe spins at the surface are not as strongly fixed since there 
are Gd spins on only one side of the Fe film. As a result, as the external field increases 
from zero, those Fe spins in the outermost layer are the first to turn toward the direction of 
the applied field. Thus the phase transition nucleates at the surface and occurs at fairly low 
values of field. On the other hand, if the outermost film is composed of Gd, the situation is 
very different. With Gd on the outside, then the spins in the outermost film are parallel with 
the external applied field in the Gd-aligned phase. Any increase in the extemal field tends 
to stabilize these outer spins in the direction of the field. Therefore, the phase transition in 
this case is essentially a bulk phenomenon, and, in fact, for thin films the phase transition 
can actually be somewhat suppressed. 

An analogous phenomenon occurs in the transition from the Fe-aligned phase to the 
canted phase. In the Fe-aligned phase, the Gd spins are antiparallel to the external field. 
As a result if the outer layer is composed of Gd, then the phase transition nucleates at the 
surface. On the other hand, if Fe is on the outside, then the phase transition nucleates in 
the interior of the crystal. This phase transition is thus essentially a bulk phenomenon and 
so occurs near the bulk value. 
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Figure 17. Phase diagram for bulk and surface phase 
transitiom in a [ 13 Fe/S GdIloll3 Fe superlattice. h and 
I are unilless measures of the extemal magnetic field 
and temperature as described in figure 6. The dotted 
curve represents the transition IO the hvisted phase in 
an infinite FdGd superlattice. (After [59].) 

Flgure 18. The angle that the spins in an FeKid 
superlattice make with respect to the applied field as 
a function of position for a ten-unit cell 13 FdS Gd 
superlanice. As the extemal field h is increased 
the reconstructed stale deviates significantly Fmm the 
aligned state. ( A h  [59].) 

The phase diagram for the finite Fe/Gd superlattice can be readily obtained by use of 
the iterative energy minimization method described above. The results are presented in 
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figure 17. Here we consider a [13 layer Fe45 layer Gd]lo/l3 layer Fe superlattice. We see 
that the aligned-Gd state now occupies only a small region of the phase diagram and that 
the surface-twist state occurs at much lower fields than is found in the bulk system. The 
structure of the reconstructed state is presented in figure 18. We see that even for fields well 
below that necessary to cause the bulk transition to the twisted state (h = 0.052) there are 
large deviations from the aligned state structure. The penetration depth of surface deviation 
is of the order of 3-4 unit cells which can be a length of a few hundred AngstrGms. 

In this section we have shown that a positiondependent energy minimization scheme 
which takes into account both the thermal averaged magnitude of the magnetic moments 
and their orientation can give a good account of the magnetic structure for many different 
magnetic multilayer systems. The general behaviour of magnetic multilayers as a functions 
of both temperature and applied field can be straightforwardly predicted This provides an 
understanding of both macroscopic measurements such as M ( T )  and static susceptibility as 
well as microscopic measurements such as neutron scattering and Massbauer studies. 

The method developed here and variations of this method 1611 have also been 
used to study a number of other multilayer systems. These include magnetic struc- 
tures in quasi-periodic superlattices [62], antiferromagnetic superlattices 1381, f e m a g -  
netic/antiferromagnetic multilayers [63] and thin Gd films on Fe substrates [32]. The mag- 
netic structure as a function of applied field can also be used to calculate magnetoresistance 
[SI. Finally, we note that a correct ground state is necessary for calculations of dynamic 
properties such as spin wave modes. This will be explored further in the next section. 

3. Spin-wave excitations in magnetic multilayers 

3.1. Introduction 

As we have seen, much of the most interesting physics that occurs in magnetic multilayers is 
due to the coupling across interfaces and the effects of having a surface. Unfortunately the 
nature and strength of interactions across an interface are difficult to measure directly. 
Even with techniques such as S P ~  and neutron scattering [64,65]. it is difficult to 
obtain unambiguous information on the magnetic structure of surfaces and interfaces. 
Measurements of the static magnetization of magnetic multilayers are usually limited to 
detecting the averaged magnetic moment from a relatively large volume of sample. Another 
problem, for example, is that ferromagnetic interlayer exchange coupling cannot always be 
inferred from static magnetization measurements. 

One method of investigating surface and interface magnetism, which has proven useful 
in studies of ferromagnetic films and multilayem, is to probe the spin-wave excitations of 
a magnetic system [66,67]. In a spin wave the magnetic moments at each site precess 
about their individual equilibrium directions. Since the spins are coupled with one another 
through exchange and dipolar interactions, spin-wave excitations are the eigenmodes of the 
magnetic system and are characterized by frequency and wavelength. Thus the frequency of 
a spin wave may depend quite sensitively on the exchange coupling between spins as well as 
other effective fields caused by, for example, anisotropies and magnetoelastic effects. These 
interactions will not only affect the frequency of precession but also the relative phase of 
precession between spins at neighbouring lattice sites. 

In ferromagnetic systems such as Fe and CO the lowest spin-wave frequencies are 
typically of the order of 10 GHz. These are long-wavelength excitations and can be studied 
using ferromagnetic resonance and Brillouin light scattering techniques [68-711. Higher 
energy excitations can be observed by magnetic neutmn scattering [72,73]. Spin-wave 
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frequencies in antiferromagnetic compounds are typically much higher, existing at several 
hundred GHz, and thus also influence the optical properties in the infrared region [74-761. 
Excitations in antifemmagnets can be observed with Raman scattering as well as neutron 
scattering [67,73]. In magnetic multilayers, the energies of long-wavelength spin-wave 
excitations will also range from a few GHz to several hundred GHz depending on the 
choice of constituent materials. We note however, that one of the fascinating aspects of 
spin waves in magnetic multilayers is that their energies can be made to vary over a fairly 
large range simply by changing the relative thicknesses of the constituent materials. Finally, 
the presence of surfaces and interfaces can lead to a localization of spin-wave modes to 
the boundaries between materials and to the outer layers of a finite multilayer [TI. These 
localized modes thus make ideal probes for examining surface and interface conditions [7Q 

Finally, spin-wave excitations are also important for thennodynamic properties 179, SO]. 
Spin waves are bosons whose number depends on the temperature of the system. The 
presence of spin-wave excitations thus reduce the net magnetic moment along the direction 
of magnetization. In a superlattice structure, gaps in the spin-wave spectrum appear due to 
the periodicity of the system. Clearly these can play an important role in the thermodynamic 
behaviour. There are several works using linear spin-wave theory to estimate M(T)  at 
low temperatures in multilayer and superlattice smctures [81-84]. Non-linear spin-wave 
interactions are also interesting and become important in determining M ( T )  at higher 
temperatures [85,86]. Non-linear interactions also lead to unique high-power resonance 
behaviour and non-linear optical properties [87,88]. 

3.1.1. Genera[ features of excitations in multiiayers. Before discussing the details of spin 
waves in magnetic multilayers, we first review in very general terms some of the fundamental 
concepts of superlattice and multilayer excitations. We begin by examining the modes of a 
system of coupled oscillators. First imagine a system of 2N uncoupled pendula We assume 
that the pendula are identical so that the frequency of small oscillations for each pendulum 
is WO. In this system, the oscillations of each pendulum are completely independent of each 
other and so there are no correlations between the motions of any of the pendula. If we 
were to drive the motion of the system by applying some osciliating external force, the only 
strong response we would observe would occur when the driving frequency was equal to 
og. 

Suppose now that we couple each pendulum to one of its nearest neighbours using 
springs as shown in figure 19(a). The strength of each spring in characterized by a constant 
CI. We can now think of our system of 2N pendula as a system of N sets of two coupled 
pendula. The motions of the individual pendula within each coupled pair are now strongly 
correlated. This results in two normal modes for each pair with each motion corresponding 
to a different frequency of oscillation. These motions are sketched in figure 19(b) and 
(c). The motion in (b)  is characterized by the two pendula oscillating in phase with one 
another and the motion in (c) is characterized by the two pendula oscillating exactly 180" 
out of phase with one another. The frequency of the motion in (b) will be 0 0 ,  whereas the 
frequency of the motion in (c) will be og + A which is larger than og. due to the added 
energy involved in stretching and compressing the coupling spring. Since the relative 
motions between pendula pairs are still completely uncorrelated, the system of 2N pendula 
would show a response to a driving force at only two frequencies: 00 and 00 +A. 

If we add springs of spring constants CI between all neighbouring pendula we than have 
a system of 2N coupled oscillators. This results in 2N different possible modes, each being 
characterized by a frequency and also by a relative phase angle between the oscillations of 
neighbouring pendula The system will show a response to a driving force at 2N possible 
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Figure 19. ( U )  WO pendula coupled by a spring. The 
two possible motions are (b) an in-phase oscillation and 
(c)  an out-of-phase oscillation. 

Figure 20. (a) A ‘superlattice’ of pndula where 
every pendulum is coupled U, iIs nearest neighbun 
via springs. The spring constan~s dmte between 
Cl and C2. Mewed as pairs of pendula coupled 
by C2 spin@, the lowest-frequency motions are in- 
phase oscillations of the pendula pain. Since there 
are lwo types of internal motion of the pendula pairs 
the longest-wavelengih motions of the en& system 
appears as in (b )  and (c). 

frequencies. The rc ive I se angle between oscillations defines a wavelength. The 
mode where all of the pendula oscillate in phase with one another has frequency 00 and a 
corresponding wavelength of infinity. 

A superlattice or multilayer is constructed in a slightly different way. Consider again 
the system of N coupled pendula pairs. Recall that each pair of pendula is intemally 
coupled by a spring with spring constant C1. Let us now couple each pair with both of 
its neighbours by a different spring constant Cz which we will assume is much smaller 
than C , .  This construction is shown schematically in figure 2 0 1 ~ ) .  There will now be 
two general classes of excitation corresponding to the two modes of oscillation of each 
pendula pair. The low-frequency excitations are composed of the in-phase pendula pair 
oscillations. A long-wavelength example is sketched in figure 20(b). The different modes 
corresponding to different phase angles between the oscillations of neighbouring pendula 
pairs form a band of excitations. Similarly there is a band of N modes due to the out-of- 
phase pendula pair oscillations. A long-wavelength excitation for this band is sketched in 
figure 20(c). The frequencies of these modes are in general higher than those of the other 
band by approximately A. 

The superlattice described above is constructed out of sets of coupled pendula The 
number of bands depends on the number of ‘intemal’ motions of each set of coupled 
pendula. Thus, if we had built the superlattice out of NL? sets of four coupled pendula, we 
would have four bands of modes. There would be N / 2  modes in each band. 
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A well known example of excitations in a periodic system is the allowed energy states 
of the onedimensional Kronig-Penney model [89]. This model consists of finite potential 
wells arranged periodically in a row. Standing-wave solutions of an electron wave function 
exist inside each well, and exponentially decaying waves are allowed in the regions between 
wells. The resulting collective excitations are Bloch wave states and are the excitations in the 
individual wells modulated by a function that has the periodicity of the lattice. In terms of 
our pendula analogy, the modes of a coupled pendula pair correspond to the standing-wave 
solutions in the potential wells. The springs Cz provide a coupling mechanism corresponding 
to the exponentially decaying waves between wells. The Bloch wavevector is proportional 
to the inverse of a wavelength that specifies the relative phase between the standing-wave 
functions in neighbouring potential wells. 

3.1.2. Spin-wave excitation in thin films. In order to discuss spin-wave excitations in 
magnetic multilayers in the light of the coupled-pendula analogy presented above, we must 
first identify the ‘pendulum’ components for a magnetic multilayer. These are simply the 
allowed spin-wave excitations of a magnetic film. The coupling ‘springs’ between the spin- 
wave excitations of the individual films can be due to both dipolar fields and exchange 
coupling between the films. The first part of this section is concerned with how the spin- 
wave excitations of each film of a magnetic multilayer couple together through purely 
dipolar interactions. The effects of exchange coupling will be considered later. 

We now discuss long-wavelength low-energy excitations that can be detected using 
ferromagnetic resonance and Brillouin light scattering techniques. For sufficiently long 
wavelengths, the dynamic magnetic pmperties of the material can be described by a position- 
independent magnetic susceptibility x of the form 

m = X - h  (21) 

where m is a time and spatially varying component of the magnetization and h is a time 
and spatially varying component of the magnetic dipolar field. Furthermore, we assume 
that the wavelengths of the excitations are still short enough that 

( k / A ) c  > W .  (7-2) 

In this limit, the magnetic fields in Maxwell’s equations are uncoupled from elechic fields. 
This is called the magnetostatic limit. The wavelengths I for which both the approximations 
of equations (21) and (22) hold are typically from 

The description of spin waves in this limit proceeds as follows. First an expression for 
x is found by solving the Landau-Liftschitz equations of motion. These equations have the 
form 

(23) 

where He@ is an effective field containing external applied fields, effective anisotropy fields 
and exchange fields. y is the gyromagnetic ratio. For a ferromagnet without anisotropies, 
x can be shown to have the well known form 1901 

to IO-’ m for ferromagnets. 

(d/df)m = ym x (h++IcR) 

where HO is an extemal applied field and Ms is the saturation magnetization. Note that 
exchange fields do not appear for a simple ferromagnet This is only true for long- 
wavelength excitations where locally the spins are parallel. Thus the exchange field produces 
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no contribution to the torques experienced by a spin. This is not true for spin configurations 
where the spin orientations vary from layer to layer as in many of the structures discussed 
in section 2. 

The constitutive relation between m and h given by equation (21) allows us to Write 
the magnetostatic form of Maxwell’s equations solely in terms of h 

A x h = O  

A * b =  A * (1 + 4 ~ r x ) h  = 0. 

Quation (25) allows us to define a magnetic potential @ such that 

h = -A#. (27) 

Using this in equation (26) gives [91] 

[Ia2/az* + (I  +4nXxX)(a2/ay* + a2/axz)]@ = 0. (28) 

The solutions to this equation represent travelling waves and are assumed to have the form 

@=hexp[i(qll .zl~ -or)]. 129) 

The vectors q1 and 011 are the wave and position vectors parallel to the surfaces. In a 
film geomeuy, the solutions also have to obey the boundary conditions at the surfaces 
which follow from Maxwell’s equations. These require that the normal components of 
b = (1 + 41rX)h and the tangential components of h be continuous acmss the surfaces. 

The solution of equation (28) has the form 

@ = [ A  exp(iky) f B exp(-iky)] exp(iql1 . q) (30) 

where the surface normal is taken to be in the y direction. Only discrete values of k will 
be allowed by the boundary conditions. For real k, these solutions describe guided waves 
which propagate in the film. These kinds of wave are called bulk or volume modes. 

A second type of solution occurs when k is imaginary. The wave will then have its 
greatest amplitude near the surfaces of the film and its smallest amplitude in the bulk of 
the film. These kinds of waves are called surface modes. The amplitude of the field from 
a surface mode is relatively large outside the film in comparison to that from a bulk mode 
which is localized inside the film. One can show that the fields of a surface mode extend 
a characteristic distance 1/lql11 outside the film. 

Application of the boundary conditions results in an implicit dispersion relation relating 
411 and O: 

2 4;+2qllk(l + 4 ~ ~ ~ r r ) c o t ( k l ) - k ~ ( l  +4xxXx) - I ~ Y C ’ ~ , ~ X ~ ~  = O  (31) 

with 

Solutions of this relation are shown in figure 21. The frequencies are shown as functions 
of the wavevector lqll where qll is in the plane of the film. The lower set of modes are 
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Flgure 21. Dipolar magnetostatic spin waves 
for a fenomagnetic film. The fmpencies are 
shown as functions of both qy and qr where q 
is Lhe in-plane component of the wavevector. 
The applied field is in the i direction. The 
bulk modes exist in Lhe frequency region 
klween s20 = y H o  and $ 2 ~  = y[Ho(Ho + 
4nM,)l’p. A surface mode exists telween 
$ 2 ~  and $ 2 ~  = y(Ho + 2nMJ for some 
directions of propagation. (After 1921.) 9x 

all bulk modes and the highest-frequency mode is a surface mode. The surface mode has 
the interesting property that it propagates only for a restricted set of directions with respect 
to the applied field For propagation along the x direction, the surface mode is localized 
to top side of the film, while for propagation along the --x direction, the surface mode is 
localized to the bottom side of the film. 

For propagation perpendicular to the applied field direction on a semi-infinite 
ferromagnetic, the results take simple forms. The surface wave (often referred to as the 
Damon-Eshbach mode 1921) has frequency 

where B is Ho + 4nM,. The bulk modes are degenerate for this propagation direction with 
frequency 

ob=YV%E.  (34) 

3.2. Spin waves in superlattices 

Consider a superlattice conshucted by altemating magnetic films with non-magnetic films. 
The spin-wave modes of each magnetic film can then couple across the non-magnetic layers 
to form collective spin-wave excitations of the superlattice. The strength of the coupling 
depends on the amplitude of the fields in the non-magnetic layers. However, as we have 
seen from the previous section, of all the allowed modes of a film the surface mode has 
the largest field amplitudes outside the film. Thus the strongest coupling due to dipolar 
interactions occurs between the surface waves of individual magnetic films. 

The magnetic potential 4 of a possible superlattice mode is sketched in figure 22 as a 
function of position in the superlattice. It is composed of surface waves on the individual 
films, but its amplitude is modulated by a periodic ‘envelope’ function. Since the envelope 
function is periodic, the superlattice mode shown here is a collective ‘bulk’ wave even 
though it is composed of surface waves on the individual films. Later we will also see 
that collective modes can exist on semi-infinite superlattices and finite multilayers and are 
localized to the outermost layers of a structure as ‘surface’ modes. 

3.2.1. Transfer mafrix description. A simple but powerful technique can be used to describe 
superlattice excitations. This technique is known as the transfer matrix method [93,94]. The 
method is basically as follows. The amplitudes of the fields at an interface between two 
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Figure 22. Amplitude of the scalar magnetic potential 
as a function of position in a magnetic superlattice for 
a bulk mode. me excitations in each magnetic film are 
surface modes and localized to one surface of &e film 
The collective excitation is oscillatory and is therefore 
a bulk mode of the superlattice. (After [95].) 

. . . 
Figure 23. Multilayer and superlattice geometry. The 
applied field is in the I direction and an in-plane 
wavevector q is defined in the .xi plane. The thickness 
of each magnelic film is dl and the thickness of each 
non-magnetic film is 4. 

films are written in terms of the amplitudes of the fields at the neighbouring interface. This 
process is continued until the amplitudes of the fields at one side of a unit cell of the 
superlattice are related to the amplitudes of the fields at the other side of the unit cell. This 
relationship is conveniently written in matrix form and is called the transfer matrix. For 
an infinitely extended superlattice, Bloch's theorem can be applied and the eigenvalues of 
the allowed superlattice excitations found. Alternatively, repeated application of this matrix 
can be used to relate the fields at one end of a finite multilayer to the fields at the other end 
of a multilayer, and find the allowed eigenvalues. 

First we describe the geometry of the superlattice shown in figure 23. The thickness of 
each magnetic film is dl and the thickness of each non-magnetic film is 4. The axis of the 
superlattice is set in the y direction and the films are indexed by the integer n. The length 
of a unit cell is defined as 

L s d l  + d2. 

We begin the calculation by defining the form of the waves which can exist in the 
superlattice. The waves which can exist in the magnetic film are defined similarly to 
equation (30): 

@Fpmric = [ A ,  exp[or(y - n L  - d,)] + S. exp[-or(y - n U l }  exp[i(qll * q - of)] (35) 

for n L  < y c n L  + dl. The decay constant CY is assumed to be real and is determined by 
solving equation (28). The solution is simply or = ik where k is given in equation (32). 



3752 R E Camky and R L Stamps 

The waves in the non-magnetic films are defined similarly: 

qm-magnetic = { C, exp(ql1 [y  - (n + 1)LI + 4 exp[ -411 (Y -n L -4 '1) exp[i(q q -ut)] 

(36) 

for n L  + dl < y .c (n + 1)L.  Here the decay constant has already been determined by 
Maxwell's equations and is equal to the magnitude of the parallel wavevector. 

We now apply the electromagnetic boundary conditionsat y = nL+dl and y = ( n + l ) L .  
Continuity of the tangential h components leads to 

A, +E.  exp(-cudl) = C, exp(-qlldz) + 4 (37) 

and 

A n t i  e x p ( - 4 )  + &+I = C. + 4exp(-ql1d2). (38) 

Continuity of the normal components of b results in 

A A  + BnL-exp(-4)  = q11(Cn exp(-qlidz) - 4)  

A.+ll+exp(-adt) + B n 4 -  = qli[cn - 4 exp(-qild2)]. 

(39) 

and 

(40) 

In the last two equations, we have used 

~ ~ = i q x x y x f a ( l + x Y y ) .  (41) 

Our goal is to have two equations relating A., B, and A,+], &+I. We do this by 
eliminating C, and D" from the above four equations. Using the definitions 

where €+ = exp(glld2) and E- = exp(-qlldz) , the result can be put in the compact form 

The matrix T in equation (43) is called the transfer matrix. This matrix has the property 
that its determinant is equal to unity, which is a statement of energy conservation within 
the superlattice. In the following sections we will use this mahix to examine the bulk and 
surface spin-wave modes of a magnetic superlattice. 
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3.2.2. Bulk spin waves in superlattices. We first illustrate the use of the transfer matrix 
method by finding the dispersion relation of bulk spin waves in a superlattice. This is done 
by requiring the amplitudes A, and Bn to have the periodicity of the superlattice structure. 
This is a statement of Bloch’s theorem for a periodic structure: 

where Q is the Bloch wavevector for the collective excitation. 
Using equation (44) together with equation (45), we can write 

[T - exp(iQL)l] (k)  = 0 

and equivalently, 

[T-’ - exp(-iQL.)l] (t:) = 0 (47) 

where T-’ is the inverse of T. These two equations can be combined to give 

COS(QL) = 4(T+ T-I) = itr T (48) 

where tr stands for the m e .  This expression gives an implicit dispersion relation for bulk 
spin waves in the superlattice StlllCNE. 

Equation (48) can be written in the form 

M Q L )  = I[qf +@’(I + xYy)’ + q:~;~]/2qlp(l+ xyy)} sinh(@dl) sinh(qll&) 

+ cosh(@di) cmh(qlld2). (49) 

This dispersion has the same form as that obtained in the standard electronic Kronig-Penney 
model. As in the electronic problem, gaps appear in the spin-wave spectrum due to the 
periodicity of the structure. Explicit results for surface and bulk spin waves in superlattices 
are discussed in the next section. 

3.2.3. Sutface spin waves in superlattices. As we saw in section 3.1.2, the presence of 
surfaces can lead to surface-localized excitations in thin magnetic films. This is also true in 
superlattice structures. To see this, we now search for surface excitations on a semi-infinite 
magnetic superlattice. As in figure 23, we locate the outermost surface of the superlanice 
at y = 0. This corresponds to placing the surface at the first interface of the n = 0 unit cell. 
The superlattice extends through the y 0 half space, and we assume that the y < 0 half 
space is vacuum. 

The presence of a surface at y = 0 means that we must now define a magnetic potential 
for the y c 0 region. We choose a form that represents exponential decay in the -y 
direction: 

~ o ” t s l d c  = exp(ql1y) exp[i(qll. $11 - ut)]. (50) 

The decay constant qu was determined by the Maxwell equation A. b = 0. 
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The requirement that the scalar potential satisfy the electromagnetic boundary conditions 
at y = 0 leads to two equations involving A0 and BO. Continuity of tangential h leads to 

@O = AO exp(-ao) + BO (51) 

and continuity of normal b results in 

9liQo = Aoexp(-as)A+ + Bok-. (52) 

Using the relations given in equations (51) and (52). we eliminate 00 from these two 
equations to find 

B ~ / A ~  = -exp(-as)r+-/r--. (53) 

In the superlattice region y 0, we also require that the collective excitation decay 
exponentially away from the surface with increasing y. We thus write 

where fl  is positive and real. 
Using this requirement in equation (44). we obtain for the case n = 0 the expression 

Defining the components of T as E,, this matrix equation consists of two coupled equations: 

CIAO t CZBO = exp(-BL)Ao (56) 

and 

TZI AO + TVBO = exp(-gL)Bo. (57) 

Eliminating exp(-pL) between these two equations, we obtain an implicit dispersion 
relation for the superlattice surface mode: 

TII - Tzz + Tiz(Bo/Ao) - Tzi(Ao/Bo) = 0. (58) 

Using equations (43) and (53), this can be written simply as 

sinh(aa)r+-r-- = 0. (59) 

= 0, and 
sinh(cr4) = 0. We can determine which of these represents a true surface mode by solving 
for 8. We examine below each of these possible solutions in turn. 

( I )  r+- = 0 requires 6 = -(ad1 fq11d2). This would imply that the collective excitation 
exponentially increases in the superlattice away from the surface rather than decreasing. This 
possibility does not represent a true surface mode. 

(2) r-- = 0 requires B = cud! -+2. As long as ad! is greater than q1&, this solution 
represents a m e  surface mode. This gives an interesting condition for the existence of a 

Equation (59) has three possible solutions. These are r+- = 0, 
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surface mode that depends on the relative thicknesses of the magnetic and nonmagnetic 
layer thicknesses. For the special case of propagation perpendicular to the applied field 
in the x direction, this condition is simply that the thicknesses of the magnetic layers be 
greater than that of the non-magnetic layers. Finally, we note that this collective surface 
mode of the superlattice is composed of the surface modes from the individual magnetic 
films since a is real. 

(3) The possibility that sinh(ad1) = 0 can also be shown to represent surface modes in 
the following way. First, sinh(cyd1) = 0 when 

a = imn/dl (60) 

where m is an integer greater than or equal to 0. In order to show that these cases correspond 
to surface excitations, we need to find 8. This is done by repeating the arguments of 
section 3.2.2, using exp(-bL) in place of the Bloch wave exp(iQL). The result is similar 
in form to equation (49): 

4- cosh(adl) CoSh(qndz). (61) 

With the condition given by equation (61) such that sinh(ad1) = 0, this expression simplilies 
to 

cosh(8L) = (-l)m COSh(qild2). (62) 

When m is even, then this represents a surface-wave solution with 

When m is odd, then 

fiL = qlldz + in(2m + 1). (64) 

The m-odd case also represents a surface-wave solution, but with a 180" phase shift between 
the excitations of neighbouring magnetic films. Since (I is imaginary for this case, these 
collective surface modes are composed of bulk waves in the individual magnetic films. 

To illustrate the difference between the two types of surface mode, in figure 24 we 
sketch the amplitude of the magnetic potential as a function of position in the superlattice 
for each type. In (a), we show the superlattice surface mode corresponding to r-- = 0 
and in ( b )  we show a superlattice surface mode corresponding to sinh(ad1) = 0 for m = 
2. Both have amplitudes which are localized to the surface of the superlattice structure, but 
each is constructed from a different set of coupled modes. 

It is also possible to obtain simple expressions for the frequencies of these surface modes. 
The surface mode sketched in figure 24(a), which consists of the coupled surface modes of 
each individual magnetic film, has a frequency given by r-- = 0. For propagation in the x 
direction perpendicular to the applied field, the frequency is identical to the frequency 
of the Damon-Eshbach surface wave on a semi-infinite ferromagnetic (equation (33)). 
Furthermore, it can also be shown that the superlattice surface mode is non-reciprocal with 
respect to propagation direction and does not exist for propagation in the -qx direction. 
This is also a feature common to the Damon-Eshbach mode of a semi-infinite ferromagnet. 
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I 

Figure 24. Amplitudes of lhe scalar @C 

potential for surface modes as a function of position 
in a semi-infinite magnetic superlavia. "0  types 
of collective surface mode are possible: (a) ones 
composed of surface mcdes in the individual films, 
and (b) ones composed of bulk mode in L e  

I 

(b) n=2.00 
aL.O.25 individual films. (After 191.) 

5 'E thicknesses of the magnetic and nobmagnetic films 
4 2 is especially imponant for tix surface modes-tk 
c sodace mode exists only when the magnetic films 

are thicker lhan the nonmagnetic films. Shown 
here are lhe spin-wave frequencies as functions 
of relative film thickness dil& for three diffemt 
choiw of q.  Propagation is perpendicular to the 
applied field. The shaded areas are the bulk modes, 
and qr is a measure of lhe perpendicular component 
of the wavevector. (After [SI.) 
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The frequencies of the other surface modes are determined by equation (61). These 
frequencies are given by 

2 1/2 
U = y(Ho(Ho +4rMs) - [4zMSHo/(l + ( m x / q ~ ~ d d 2 ) l ( q Z / q ~ )  1 . 
These modes are degenerate with the ferromagnetic resonance frequency for propagation 
perpendicular to the applied field. 

An example of the bulk and surface mode frequencies as functions of relative layer 
thicknesses is shown in figure 25. Here propagation is perpendicular to the applied field. 

(65) 
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The parameters used for this calculation are appropriate to an Ni/Mo superlattice with Ms 
= 480 G and an applied field strength of 1 kG. The shaded areas represent collective bulk 
modes and the full curves are the collective surface modes. 

The band of bulk modes exists for frequencies between HOB and (Ho + 8 ) / 2 .  As quL 
increases, the frequency of a bulk mode decreases. For small q1lL the density of states is 
greatest near the bottom of the bulk bands. For larger q11L the density of states becomes 
more uniform across the bulk band. 

The surfacemode frequency is independent of the thickness ratio dl/dz for di > dz. 
Its frequency is then identical to the Damon-Eshbach frequency for a surface mode on a 
semi-infinite fermmagnetic. For dl -= dz, the surface mode merges with the top of the bulk 
band and is no longer a true exponentially decaying surface mode of the structure. 

In terms of the results from Brillouin light scattering experiments for this geometry, 
there should be three main contributions to the light scattering spectrum. The surface mode 
should contribute strongly for di > dz. with a frequency above that of the bulk modes. Also, 
the surface mode will exist only for certain propagation directions and therefore appear in 
only the Stokes or antistokes side of the light scattering spectrum. The other two features 
should be due to bulk modes. These modes should provide a strong but broad contribution 
from frequencies near the bottom of the bulk bands where the density of states is greatest. 
There should also be a large contribution from modes near the top of the bulk band The 
reason is that the strength of the light scattering signal is in large p;ut determined by the 
overlap of the electromagnetic fields of the incident light with the fields produced by the spin 
wave. Since an incident light wave has a limited penetration depth in a metallic superlattice, 
the magnitude of the overlap is determined over the first few hundred kgstrijms of the 
superlattice. The higher-frequency bulk modes are characterized by small values of 411 L 
which means that the magnetic fields produced by the spin wave vary slowly as one moves 
away from the surface into the superlanice. The net value of the overlap of the light-wave 
and spin-wave fields is thus much larger for spin waves with small values of 411 L than fur 
spin waves with large values of 411 L. 

In figure 26, we reproduce experimental light scattering spectra taken from FePd 
multilayers. The different spectra are results for multilayers with various thickness ratios 
for the magnetic and nonmagnetic films. Note that for dl > dz there is an exha peak on 
the Stokes side which is due to a surface mode excitation. For dl e dz there are only two 
peaks visible in the spectrum. Note that the feature at Rb is an artifact of the calculation 
and does not represent a physical feature. 

32.4. Spin waves infuife multilayers. The characteristics of spin waves on finite multilayers 
differ in many respects from those in semi-infinite superlattices. Some of the more impomt 
differences are as follows. There will only be as many modes as magnetic layers. So with 
N layers, there will be N - 1 collective bulk waves and one collective surface wave for 
each mode of the individual magnetic films. 

Since there are two outside surfaces of the multilayer, there will be surface mode 
propagation in the t x  and -x  directions. The mode propagating to the left of the applied 
field will be localized to one surface of the multilayer and the mode propagating to the 
right of the field will be localized to the other surface of the multilayer. Furthermore, the 
surface-mode frequency will in general dewme with decreasing number of layers in the 
multilayer. 

The rule that a surface mode exists only when the thickness of the magnetic film is 
greater than that of the non-magnetic film also does not bold for multilayers with small 
numbers of layers [96]. For numbers of layers of the order of ten, the non-magnetic layer 
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d l  edp  = 2 2 A  

d l  = 4 2 A  d z =  139A 

d l  ‘41 A d p =  9 A  

d l  = 4 1 A  d 2 =  9 A  
(Ho reversed) 

wo-w3/7H. 

Figure 26. Theoretical and experimental Brillouin light scattering isu1t.s for femmagnetic/non- 
magnetic muldlayen consrmcted with different magneticlnon-magnetic hlm lhickness ratios. The 
low-frequency peaks show the scanering f” the wllective bulk bands and the high-fnquency 
peak is the surface mode. The experimental multr on FeiPd multilayers wrrespnd very well 
to theory. with Ihe surface peak only existing for dr > 4. The surface mode swilches sides as 
the applied field is reverred. (Theory. after 191: experiment. B Hillebrands.) 

thickness must be less than one tenth of the non-magnetic layer thickness, for example. 
The transfer matrix method used above is especially useful for calculating the allowed 

modes of a finite multilayer. One proceeds essentially as we did in our discussion of surface 
waves by defining a magnetic potential outside each outside surface of the multilayer and 
applying the appropriate boundary conditions at both of these surfaces. Unlike our treatment 
of the semi-infinite stack, however, we must repeatedly apply the transfer mahix through 
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each layer of the multilayer in order to relate the coefficients of the magnetic potential at 
one outer surface to the coefficients at the other surface. This calculation can easily be done 
numerically, although diagrammatic methods are also available which allow one to perform 
the matrix multiplications fairly simply [97]. 

3.2.5. Spin waves in canted multilayer-ffective medium theory. As described in section 2 
of this article, the equilibrium orientations of the magnetizations of each film are determined 
by the competition between exchange interactions, interactions with the static applied field, 
and anisotropies. A very simple but interesting case occurs when the exchange interaction 
between the magnetic layers across non-magnetic spacer layers is antiferromagnetic, as 
discussed in section 2. In this case the Zeeman interaction tries to align the magnetizations 
of each film along the applied field, while the antiferromagnetic exchange interaction hies 
to align the magnetizations of neighbouring films antiparallel. For simplicity we assume 
that this competition results in a spin configuration such as that shown in figure. 15(a). 

We illustrate the basic features of this system with an example consisting of N 
ferromagnetic layers separated by N - 1 non-magnetic layers. As shown in figure lS(a), the 
magnetizations of each magnetic layer are assumed to make an angle 8 with the e x t e d  
applied field. The magnetizations of neighbouring magnetic layers are rotated from one 
another by the angle 28. As the field is increased, 8 will become smaller and will eventually 
go to zero. The magnetizations of all layers will then be parallel. The field strength for 
which this occurs is 1601 

Ho = 44’M (66) 

where M is the net magnetic moment in a film. 
As remarked in section 3.2.3, the most prominent features of a Brillouin light scattering 

spectrum from a magnetic multilayer come from the surface mode and the small q1L bulk 
modes. We can make a very simple argument for the frequency dependence of these modes 
as a function of 8 in the following way. First let us consider the stuface mode. ‘The 
fnquency of the surface mode for a multilayer with N >> 1 was shown to be given in 
equation (33). The surface mode is characterized by an exponential decay of the spin 
wave’s magnetic potential away from the outer surface of the multilayer. The decay length 
is in general very long in comparison to the size of a unit cell. This means that the surface 
wave is fairly insensitive to changes in the magnetization over distances comparable to the 
length of a unit cell and instead is affected by the average magnetic properties of several 
unit cells. Thus the frequency of a surface wave depends not on Ms but on the average 
magnetization. 

The average magnetization for the magnetic layers in a unit cell is given by 

The frequency of the surface wave for B > 0 should then be obtained simply by replacing 
M, in equation (33) by Mavg [98]: 

a, = ~ ( H ~ + ~ I c M , c o s ~ ) .  (68) 

The frequency of the 411 L = 0 mode is the ferromagnetic resonance frequency given by 

ab = J&(& t4ICMS). (69) 
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By exactly the same arguments as those given above, the frequency of this bulk mode for 
B > 0 should also be given by replacing M, by Mnvg. 

The validity of this approximation can be checked by comparison to an effective 
medium calculation which takes into account the magnetic fields in each film and solves 
the appropriate electromagnetic boundary condition problem. The effective medium 
approximation is a relatively simple approach which correctly gives the frequencies of 
the surface and qll L = 0 bulk modes [9!3-102]. 

The essence of the effective medium method is as follows. The dynamic response of 
each magnetic layer is written terms of the dipolar fields in each layer via the Landau- 
Lifshitz equations of motion. In terms of configuration shown in figure 15, this results in a 
set of equations for the motion of spins canted at an angle 8 from the direction of the applied 
field and another set of spins canted at an angle -0 away from the applied field direction. 
These two sets of equations are coupled through the interlayer exchange interaction Ji and 
dipolar fields. 

Next, an average fluctuating magnetization m is defined as the sum of the fluctuating 
magnetizations created by the two sets of spins. If we label the magnetizations of adjacent 
films as ma and mb respectively, then m is simply 
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m = ;(ma + mb). 

Correspondingly, the equations of motion for m are the sum of the two sets of equations 
of motion. These are 

m, = ~[XIcos2(h~+h~)+X2COSe(h: +h!)  +X4sinecose(h; -h: ) ]  (70) 

my = i[-xZ(hf: + hjl) case + x3(h; + h) )  + x2sine(h; - h 3 ]  (71) 

m, = 4[x4sin0cose(h: - h ~ ) - x s s i n ~ ( h ~ - h ~ ) + x 4 s i n * e ( h ~ + h : ) ]  (72) 

where ha are the dipolar fields acting on the set of spins canted by B from the field direction 
and hb are the dipolar fields acting on the set of spins canted by -0 from the field direction. 
The x values are given by 

~ M , H , / H , ~ ) ~ : / [ ( w / Y ) - ~ ~ ]  (73) 

The field He is the antiferromagnetic exchange field defined as He = J, /g@B. The 
magnetizations are canted for Ho c 2He. We also include an easy-plane-type anisotropy 
field, Ha, which tends to align the spins in the xz plane. The poles of the x values are 
given by 
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To bring equations (70x72) into the form of a susceptibility m = x. h an appropriate 
average field h must be defined. This can be done in direct analogy to the definition of an 
average m: 

h = ;(ha + hb). (80) 

The magnetic fields must obey Maxwell’s equations and satisfy electromagnetic 
boundary conditions at the interfaces between films. Thus the tangential fields h and normal 
fields b must be continuous from film to film. In the geometry of figure 23, this means that 
h: = h! and hi = h! but does not require h; = h!. In order to satisfy the continuity of 
normal b requirement one defines a field h in the nonmagnetic films and uses the equations 
of motion to eliminate the quantities h; + h! which appear in equations (70)-(72). 

An effective medium susceptibility can then be calculated using equations (70x72). 
The resulting susceptibility tensor has the form 

The boundary conditions on normal fields b introduce ‘filling factors’ into the poles of the 
susceptibilities which shift the resonance frequencies according to the relative thicknesses of 
the magnetic and non-magnetic films. Canting, on the other hand, also shifts the resonance 
poles and leads to the existence of a xXt term that does not appear when the magnetizations 
are aligned parallel. The explicit results are somewhat lengthy and can be found in [981. 
Instead, we show the results for the special case of the limit of vanishing non-magnetic 
layer thickness: 

0 xrz 

where 

XZZ = -(Qd/2H,)M,nd/[(w/v)’ - Q:]. (83) 

The pole Q, of the zz component goes to zero as the canting angle goes to zero: 

Q,j = sin9J2He(H, +4nM,). ( 8 4  

Note that in this limit the system is identical to a two-sublattice easy plane antiferromagnet. 
The results here differ from earlier treatments of the antiferromagnet in that we have 
consistently taken demagnetizing fields into account whereas previous treatments did not. 
The resonance frequency given by equation (84) therefore includes a demagnetization factor 
4nMs which does not appear in earlier calculations. 

The effective medium susceptibilities derived in this manner are very useful in that 
magnetostatic excitations for finite and semi-infinite multilayers can be calculated as 
in section 3.1.2 for the magnetostatic excitations in a corresponding uniform medium. 
The difference is that one uses the effective medium susceptibilities in place of the 
susceptibilities for a homogeneous material (equations (24)). This method has been used to 
study ferromagnetic and antiferromagnetic superlattices [102-104] as well as for shuctures 
with helical and conical magnetic ordering [105]. Also, since the effective medium 
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susceptibilities are considerably different from those for a uniform ferromagnetic, the 
dispersion relation also differs from equation (32) and the decay constant is modified. 
These relations become 

R E Camley and R L Stamps 

with 

. .  
L -P9Y I 

The permeability fi is defined as usual: p = 1 + 417~. The angle p is defined between 911 
and the z axis. Finally we remark that an effective medium calculation of the surface-mode 
frequency gives the same result as an expansion to first order in 41115 of the dispersion 
relation obtained using the transfer matrix method [loll. 

In figure 27 we compare the resui6 of effective medium theory to the approximations 
of equations (68) and (69). The circles are the surface-mode frequencies of equation (68) 
and the squares are the bulk-mode frequencies given by equation (69) with the replacement 
for M,. In this figure the frequencies of the spin-wave modes are shown as functions of the 
applied field strength. 

The full curve is the result of the explicit multilayer calculation for the surface mode. 
The shaded area represents the bulk band obtained from this same calculation. The 411 L = 0 
mode lies at the bottom edge of the bulk band. For HO > 0.9 kG. the magnetizations of 
the magnetic films are aligned parallel to the field. For fields less than this, magnetizations 
are turned away from the direction of the field by the angle 8. The frequencies of the 
surface mode and lowest bulk mode decrease with decreasing field and go to zero as Ho 
goes to zero. There is clearly very good agreement between the multilayer calculation and 
the approximations of equations (68) and (69) using the averaged magnetization, MavC 

The results of the multilayer calculation show several interesting features in the 8 > 0 
region for fields below 2 kG. Here there are two bands of bulk modes and two surface 
modes. This is a common feature of multilayers composed of antiparallel ferromagnetic 
films. The modes from the two bands cross at HO 5 1 kG. The highest-frequency mode 
begins near 20 GHz for Ho = 0 and goes to zero at HO = 2 kG. This is a surface mode and 
exists only in the 8 z 0 region. 

Recent experiments on CoBu and PyBu multilayers by FaBbender et a1 [ 106,107] have 
confirmed this picture. Using Brillouin light scattering they measured the frequency of the 
surface mode as a function of the applied field for a series of multilayers with differing Ru 
layer thicknesses. In particular, the surface-mode frequency tended toward zero as the field 
was decreased, as shown in figure 27. 

The effective medium treatment presented in this section is based on the assumptions of 
a uniformly canted structure and excitations which are long wavelength in nature. In the next 
section we explore an approximate treatment for shorter-wavelength modes which includes 
dynamic exchange interactions. While useful, this treatment is also an approximation. A 
complete treatment for spin waves in arbimarily canted structures that treats exchange and 
dipole contributions exactly is presented in section 3.3. 

3.2.6. Effects of dynamic achange interactions. To conclude our inhoductory examination 
of spin waves in magnetic superlattices, we discuss some aspects of dynamic exchange 
coupling between spins. To begin we recall that all of our discussions up to this point were 
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Figure 21. Spin wave frequencies for a m t e d  Figure 28. Spin-wave frequencies as hct ions of 
sUucNre. The frequencies of spin waves in a multilayer interlayer exchange. The lowest-frequency modes 
with antiferromagnetic interlayer coupling are shown as for a six-film multilayer are shown. Here positive 
functions of Lhe exlemal applied field. In this example A12 indicates ferromagnetic coupling and negative Ai2 
the magnetization is canted away f" lhe applied field antifermmagnelic coupling. The horimntal line is the 
for fields below 2 kG. The magnetizations are aligned surface wave and the others are bulk modes. The 
with the applied field for fields above 2 kG. The full magnetizations are assumed lo be parallel to the applied 
curves are surface modes and the shaded areas an bulk field. Nole ulat the modes soften as AIZ becomes 
bands calculated using effective medium theory. The more negative. indicating that Lhe aligned state becomes 
circles and squares are calculated using the average unstable. ( A h  [1721.) 
magnetization per unit cell as in equation (68). 

made under the assumption that the magnetic response of the spin systems could be described 
with a magnetic susceptibility x that was independent of position as in equation (24). This 
is a valid description for spin-wave wavelengths which are very long in comparison to the 
lattice spacing, but the description breaks down for shorter wavelengths. 

For short-wavelength excitations one needs to include terms in the Hamiltonian, or 
equivalently the equations of motion of equation (23). which take into account dynamic 
exchange interactions between neighbouring spins. One way of doing this is to include in 
the equations of motion an effective exchange field of the form [ 1081 

hi = DV2m (87) 

where D is the exchange stiffness constant and is proportional to the exchange constant of 
a Heisenberg spin model. The result of adding this term into the equations of motion is to 
introduce a spatial dispersion into the susceptibility. 
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Because of this, calculations which include both exchange and dipolar interactions can be 
quite complicated. The reason for this complication is that the exchange interaction is itself 
responsible for a family of pure exchange modes which are normal modes of a magnetic 
film. The dipolar interaction couples these modes and a superposition of exchange modes is 
required in order to satisfy the electromagnetic boundary conditions at each surface of a film 
[108]. In amultilayer, a superposition of exchange modes is required to satisfy the boundary 
conditions at each interface [lW]. The special case of double layers was considered by 
Griinberg and co-workers [ I  IO]. We also note that most previous calculations employed 
Hoffman boundary conditions [ 11 I]. These conditions have been re-examined recently and 
small corrections have been shown to be necessary [112,113]. 

Calculations which use an effective exchange field of the f a n  given in equation (87) 
typically find approximate solutions to the problem by superposing six of the lower-energy 
exchange modes of each film at each interface. The calculation is somewhat involved and 
must be done numerically. 

In a single thin ferromagnetic film, the spin waves gain an energy of the order of 

D(q: + 9;)’ (88) 
where here we have written qy to indicate the component of the spin wave’s wavevector 
normal to the surface. For the surface mode and the qy = 0 bulk mode, the energy increase 
is only Dqt, which is relatively small for typical light scattering experiments. 

The main effect of including exchange interactions in the theory is to increase the energy 
of the bulk modes. For bulk modes, qy is approximately given by 

qy = sn/d (89) 
where s is an integer and d is the thickness of the film. For Fe, D is of the order of 
IO’ J cm-’. For thin films of the order of I00 A, even the s = 1 bulk modes have energies 
which are much larger than the surface mode. Therefore the lowest-frequency collective 
modes of a superlattice consisting of thin films will be composed of the surface modes of 
the individual thin films. 

In a similar fashion, exchange coupling between the magnetic films of a multilayer will 
alter the frequencies of the collective modes. Interlayer exchange coupling, however is 
typically 100-10M) times smaller than inbalayer exchange coupling. The collective surface 
mode will again remain largely unaffected, but the frequency of the collective bulk modes 
will change approximately according to 

(90) 
where Q, is the component of the Bloch wavevector along the axis of the multilayer and 
Ji is a measure of the strength of the interlayer exchange coupling. The height of the 
multilayer is L, as before. Note that the energies of the bulk modes decrease in the case of 
antiferromagnetic coupling where Ji is negative. 

An example illustrating the effects of interlayer exchange coupling is shown in figure 28. 
Here the frequencies of the collective modes of a six-layer multilayer are shown as a 
function of interlayer exchange. Here At2 is a measure of Ji. The surface mode appears as 
the approximately horizontal full curve, and the energies of the remaining five bulk modes 
increase with increasing J,. The larger Qy is for a given mode, the more sensitive it will 
be to 4. We note that the dependence of the bulk spin-wave energies on the ferromagnetic 
interlayer exchange has been demonstrated experimentally [109]. Oscillations in the sign 
of the interlayer exchange coupling as a function of non-magnetic layer thickness have also 
been extensively examined for Fe/Cr/Fe sandwiches [I 101 and Co/Ru superlattices [106]. 

A 0  ‘c YJiQ: = y J i ( s n / L ) ’  
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33 .  Discrete model and phase transitions 

In section 3.2.4 we encountered a simple example of how the dependence of spin-wave 
energies on the ground state configuration can signal a magnetic phase transition. In the 
example shown in figure 15 we see a transition between an antiparallel aligned state at 
zero applied field and a canted state for small field strengths. and finally a transition to a 
fully aligned state at larger fields. Each of these phase transitions is accompanied by the 
softening of a spin-wave mode. 

In order to consider all of the phase transitions discussed in the second section of this 
article, we need a spin-wave theory that allows the spins to be able to lie at arbitrary angles 
to the direction of the applied field and also allows the angle of rotation to vary from layer 
to layer. A complete theory would also treat dipolar and exchange effects exactly and not 
resort to the long-wavelength approximations discussed in the previous sections. Such a 
model is by its nature discrete and uses the m e  effective fields at each lattice site. 

We will present the general theory shortly, but first review by way of introduction what 
can be learned about some kinds of transition from a theory which assumes a simple uniform 
spin configuration. We will see. for example, that the surface phase transition in the FdGd 
superlattice described in section 2 is accompanied by a softening of a surface spin-wave 
mode. 

33.1. Surface phase transifions in semi-infinire superlattices. In section 2 we saw that the 
semi-infinite antiferromagnetically coupled Fe/Gd superlattice can display three different 
phases depending on the temperature and strength of the applied field (see figure 17). For a 
13-layer FeEve-layer Gd system at low temperatures and small applied fields, the Gd will 
prefer to align along the field direction. When the field is increased, and with Fe films at 
the surfaces, the system goes into a surface-twist phase as shown in figure 18. As discussed 
in section 2 the bansition from the aligned Gd state to the surface-twist state begins with 
the outermost Fe spins. In contrast, an Fe/Gd superlattice constructed with Gd spins at the 
surface will undergo a transition from the aligned Gd phase to the twist phase than begins 
not at the surface, but in the bulk [59]. 

This disparate behaviour between Fe/Gd superlattices with Fe or Gd at the outer surface 
is also reflected in their respective spin-wave frequencies. We show this by calculating the 
spin-wave energies for each superlattice in the aligned state and observing the effects of 
increasing the applied field strength. In the following theory we neglect dipolar interactions 
and fields and include only nearest-neighbour exchange interactions [591. 

With only exchange energies and the Zeeman energy due to the applied magnetic field, 
the equations of motion have the simple form 

where S. is a spin in layer n, 8 is an index over nearest neighbours, and J...+a is the 
exchange interaction (in field units) between neighbouring layers of spins. A spatial and 
time dependence of the form exp[i(qllq - or)] is assumed where 911 is the component of 
the wave vector parallel to the interfaces. 

A wave vector component perpendicular to the layers is also defined using the Blwh 
theorem. If the unit cell of the superlattice consists of a total of N Fe and Gd layers, then 
the spins in neighbouring cells are related by 

%+N = S, exp(*BL,) (92) 
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where L is the length of the unit cell and p is the perpendicular component of the wave vector 
and is in general complex. Real f l  correspond to exponentially increasing or decreasing 
solutions and are associated with a surface wave. Imaginary ,¶ represent travelling waves 
associated with bulk spin waves. Substitution of these solutions into the equations of motion 
of equations (91) and linearizing results in two equations for the spins in each layer of a unit 
cell. The number of equations is reduced to one equation per spin layer by transforming to 
the variables Sf = S, +is,. 

The equations of motion will be identical in form from one unit cell to the next except 
for the spins in the unit cell at the surface of the superlattice. In the bulk of the superlattice, 
the equations of motion for the spins in a unit cell are 
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X 1"J 
s;: 

(93) 

where S N  = 4(sbJo,i + SiJi.2) and SN- i  = ~ ( $ - I J N - I , N  -t ~ ; J N , N + I ) ,  and where 
\ 

DQ = -A(q11) = - coS(%x/a) cOS(%Ja) (94) 

with lattice constant a. A BCC lattice is assumed. 
The equations of motion for spins in the surface unit cell are identical to equations (93) 

except that the first equation no longer contains terms coupling the outermost layer to the 
next cell. Thus the first equation is replaced by 

(o /Y)S:  = [Ho +4S;Ji,2]S: - [ A ( q i ) S ; J i , 2 ] s i .  (95) 

There are then two unique sets of equations, one for the spins in the outermost unit cell and 
one for the spins in a unit cell in the bulk. The problem is then solved by choosing o and 
p pairs that simultaneously satisfy both sets of equations for a given field HO and parallel 
wave vector 911. This is done numerically in a saaightforward manner. 

Results of this calculation for a superlattice composed of 13 layers of Fe and five layers 
of Gd per unit cell are shown in figures 29 and 30. In figure 29 Ha = 0 and the spins are 
in the aligned state. The shaded areas are bulk modes. The circles show the surface mode 
for the superlattice with Fe at the surface and the squares show the surface mode for the 
superlattice with Gd spins at the surface. Note that the surface mode for the structure with 
Fe spins in the surface layer is separated from and lies below a bulk band. The surface 
mode and bulk band for the structure with Gd in the surface layer are degenerate with zero 
energy at k = 0. 

The two bulk bands behave differently with respect to the applied field: the frequencies 
of the vertically shaded bulk band increase with increasing field and the frequencies of 
the horizontally shaded bulk band decrease with applied field. This is indicated by the 
armws in figure 29. The surface spin-wave frequencies also depend quite differently on the 
applied field for each of the two structures. Again as shown by the arrows in figure 29. the 
surface-wave frequency for the Fe surface structure decreases with increasing field while the 
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Figure 29. Dispersion relation for bulk and surface 
spin waves in a semi-infinite superlattice with unit cell 
13 €el5 Gd. The applied field is zero. The arrows 
indicate the motion of the spin-wave dispersion curves 
with inneasing field. The Fe surface mode occurs only 
for lhe syswn with Fe on the outsid% while (he Gd 
surface mode occurs only for the system with Gd on 
the outside. The bulk modes shown are those for an 
infinite sample and are thus independent of the surface. 
( A h  1591.) 
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Figure 30. Dispersion relation for bulk and surface 
spin waves in a semi-infinite superlattice with unit cell 
13 Fe/5 Gd. The applied field is h = 0.01, near the 
value needed to drive the lowest surface mode m zero 
frequency. The arrows indicate the motion of the spin- 
wnve cwes with increasing field. The Fe surface mode 
OC-NTS only for the system with Fe on the outside. while 
the Gd surface mode occurs only for Ihe system with 
Gd on the outslde. The bulk modes shown are those 
for an infinite sample and are thus independent of Ihe 
surface. (After [S91.) 

surface-wave frequency for the Gd surface structure increases with increasing field. This 
behaviour continues as the field is increased with the result for the Fe surface structure that 
the surface mode becomes soft at a finite field value. 

Figure 30 shows the spin-wave modes for the same structures with H, = O.Ol& where 
J F ~  is the exchange constant for bulk Fe in field units. This choice of field puts the Fe 
surface superlattlce at the transition point between the aligned phase and the surface twist 
phase. The surface mode for the Fe surface structure has become soft for this field. The 
interesting point is that the softening of the surface mode signals a phase transition which 
nucleates at the surface. Examination of the ground state (see section 2) shows that the 
twist penetrates further into the bulk as the field is increased. It is interesting to note that 
the critical field for a transition to a state where all of the Fe and Gd spins are canted 
can in fact be as much as five times larger than the critical field for the transition to the 
surface-twist state. 

3.4. Phase transitions in finite multilayers 

The previous example illustrates some of the basic features of spin-wave dynamics near 
magnetic phase transitions. In particular we have seen that a phase transition is signalled 
by a mode softening. Some phase transitions occur because the environment of a surface 
spin is very different from that of a spin in the bulk and a softening of the surface mode is 
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a particularly sensitive indicator of these kinds of transitions. In order to study transitions 
between more complicated states using spin waves we must extend the dynamic theory to 
include arbitrary spin configurations 1961. 

A theory along the lines used for FeKid can be constructed by first separating the spin 
variables into static and dynamic parts: 

S n ( q , t )  = ~~+s,exp[i(qll .sl i  -ot)]. (96) 

The equations of motion (equations (91)) are linearized by keeping only first-order terms in 
the components of 8.. The direction of S,, is found using the techniques of section 2. In 
general it is no longer possible to apply Bloch’s theorem, and so one must solve the entire 
set of coupled equations for all magnetic layers in the multilayer. The set of equations can 
be put into eigenvalue fom with frequencies o as the eigenvalues. There are two equations 
for each layer resulting in a 2N by 2N matrix to be diagonalized. This of course places 
practical limits on the size of the multilayers we can describe with this theory. 

It is also possible to extend the calculation to include dipolar coupling. This means 
adding to the equations of motion an effective field of the form 
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where T is the position vector to the spin at (q, n )  and T’ is the position vector to the spin 
at (zi, n’). As written the sums converge quite slowly, but techniques exist to put them 
into a rapidly convergent form [ I  141. 

A useful approximation can be derived for long-wavelength excitations. In this 
approximation the dipolar fields are written most conveniently in terms of their static and 
dynamic parts, defined as H, and hn(qll), respectively. These are given by [96] 

and 

The static term is nothing more than the local field acting on a spin within a femmagnetic 
film. This approximation neglects, to some degree, the discrete nature of the lattice and 
assumes a demagnetizing field appropriate to a thick film. The errors involved are small 
however, even for quasi-two-dimensional films. Thus the variation in the dipolar field from 
layer to layer is reasonably well represented by this treatment. 

Our first example is shown in figure 31. Here the lowest spin-wave energies are shown 
as functions of applied field for a multilayer consmcted from ten magnetic layers. The 
parameters agree with those used in the effective medium theory to generate figure 27. 
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Figure 31. Spin-wave frequencies in the uniform 
canted slate. The lowest spin-wave frequencies are 
shown as functions of applied field for a ten-film 
multilayer. The magnetizations are canted away from 
lhe field for h c 1 and parallel mthe field for h >, 1. 
Pmpagation is perpendicular to the Peld:dim,uion. The 
modes are numbered for future reference,as. shown. 

F o r e  32. Mode prohles in lhe uniform canted state. 
The Uansverse magnitudes of spin Rucluations in the 
yz plane are shown for each of the ten lowest-energy 
modes shown in figure 31. Note the localization of 
mode IO to one side of lhe multilayer. (After [%I.) 

(A& [961.) . .. 

A uniform ground state where 0 is defined by equation (18) is also assumed in order to 
compare the two theories. The modes labelled 1 and 10 have the longest wavelengths and 
the frequencies of these modes agree well with the corresponding modes calculated with 
effective medium theory. The other modes shown in figure 31 are m e  bulk modes and are 
not correctly represented with effective medium theory. It is interesting to note that the 
bulk modes are degenerate in frequency at one field. 

The transitions from aligned to canted spins can be seen in the frequencies of modes 
1 and 10. The spins in adjacent films are canted for 0.9 h > 0. The energy of mode 1 
decreases with increasing field until it finally becomes soft near h = 0.9 where the spins align 
in direction of the field. Note however that mode 1 actually becomes soft at a field smaller 
than h = 0.9. This is because we have used the wrong ground state spin configuration. 

The mode amplitudes give information above the localization of spin waves. The 
amplitudes corresponding to the ten modes of figure 31 are shown in figure 32. The 
quantity plotted is the magnitude ofthe spin fluctuations in a plane transverse to the applied 
field, sms [ 1151. Mode 10, a surface mode, is significantly localized to an outer surface of 
the multilayer while the other modes are not. 

A similar calculation using the c o m t  ground state spin configuration (as determined 
by the methods described in section 2) is shown in figure 33. The transition to the aligned 
state. occurs at h = 0.9 and mode 10 now softens at h = 0.9. There is now a great deal 
of mixing between all modes for fields less than 0.9. All the spin-wave amplitudes in the 
proper p u n d  state are localized to the outer surfaces of the multilayer to some degree. 
Modes 3 and 6 are particularly strongly loca l id  to the outer layers for this choice of field 
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Figure 33. Finite-size effeas. The correct p u n d  stale 
spin wnfigurations were used in lhe calculation of the 
spin-wave frequencies. The frequencies are shown as 
Functions of applied field for a ten-film multilayer. The 
ground state spin configurations resemble Ihose shown 
in figure 15. The spins are aligned in the field dimtion 
for h z 1. Nme lhe swong mixing of modes for k c 1. 
(After 1961.) 

mod*: 1 

Figure 2 4  Localization OF modes due to finite size. 
sm is shown at h = 0.4 for he modes of figure 33. 
The IiniWsize effects are due to the reduced exchange 
coupling experienced by the outermosl films of the 
multilayer. This leads to a smng mixing of modes 
and the localiration of several mode ampliludes to the 
outermost films of the multilayer. (After [%I.) 

as can be seen in figure 34 where the sm values are shown for the ten modes of figure 33. 

4. Giant magnetoresistance in magnetic multilayers 

4.1. Introduction 

One of the most exciting and surprising properties of some of the new magnetic multilayers 
is the phenomenon of giant magnetoresistance. Here the resistivity of a multilayer structure 
can be changed by up to 60% (at mom temperature) through the application of a magnetic 
field. This effect was originally discovered in Fe/Cr sandwiches [ 1161 and multilayers [ 1171 
but has since been found in many other magnetic multilayers systems [47]. These include 
Co/Cu [48], Co/Ru [16], Ni/Ag [ I181 and Co/Au [ I  191. As we will see a key feature of the 
giant magnetoresistance is the change in the magnetic spin configuration as a function of 
applied field. Thus, as we saw in section 2, systems with some antiferromagnetic coupling 
are of particular interest. 

The put the giant magnetoresistance effect into perspective, we first review the normal 
magnetoresistance effects in non-magnetic and magnetic metals [IZO]. For non-magnets, 
one generally finds a positive magnetoresistance effect in that the resistivity increases as an 
external field is increased. This increase is generally proportional to B2. For magnetic 
materials one finds what is called the 'anisotropic magnetoresistance' effect where the 
resistivity of the metal depends weakly on the relative orientation of the magnetization 
and the current The resistivity is generally largest when the magnetization and the current 
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are parallel ( p t )  and smallest when the magnetization and the current are perpendicular @L). 
For crystalline samples the resistivity tensor giving p in terms of the direction cosines of 
the magnetization with respect to the crystatlie axis can be quite complicated. However 
for polycrystalline samples one finds the simple relationship that 

p =PI -I- A ~ c o s ~ ~  (100) 

where 0 is the angle between the current and the magnetization: Ap = pli -PI. For typical 
magnetic materials in use today A p  is rather small. For example at mom temperature 
A p / @  is 0.2% for Fe, 2% for Ni and 3 4 %  for Permalloy. 

In contrast to the above, the giant magnetoresistance effect measured in magnetic 
multilayers can be more than an order of magnitude larger. Also, the giant magnetoresistance 
effect is effectively independent of the relative orientation of the magnetic field with 
respect to the current, but depends on the relative orientation between magnetizations in 
neighbouring ferromagnetic films. As we will see, this orientational effect occurs because 
electrons with a specified spin in one Fe film can have a different spin direction when 
measured in a different Fe film with a different orientation for the magnetization. 

In the Fe/Cr samples which were studied, there is an effective antiferromagnetic coupling 
between Fe films due to the intervening Cr films. As a result, the magnetic moments in 
neighbouring Fe films are antiparallel to each other in zero field With a strong enough 
external field, the antiferromagnetic coupling may be overcome, and the magnetic moments 
of all the Fe films can be forced to lie in the same direction. A typical plot of the resistivity 
of an Fe/Cr/Fe sandwich structure is shown in figure 35. As can be seen, the resistivity 
is largest when the Fe moments are antiparallel and smallest at higher fields when the Fe 
moments are forced to be parallel. 
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Figure 35. Percentage change in resistance 
as a function of applied field for a sandwich 
smw. The deviation of the experimental 
dah f” aem at high field is a measurc of 
the size of the magnetoresistance aniso@opy 
effect, neglected in the theory. (After [IZSl.) 

The experimental results on Fe/Cr multilayers [116,117,121] can be summarized as 
follows. (1) The resistivity is typically measured with the current flowing parallel to the 
interfaces. It is highest when the magnetic moments in neighbouring Fe films are antiparallel 
and smallest when they are parallel. (2) Multilayer structures with many thin Fe films have 
a much larger magnetoresistance effect (50% at low temperatures) than a single sandwich 
structure of Fe/Cr/Fe (3% at low tempera-). (3) Changing from mom temperature to 
liquid He temperature increases the magnetoresistance by a factor of 2-3. (4) Experiments 
with the current flowing perpendicular 11221 to the interfaces have shown significantly larger 
magnetoresistance effects than those with the cuments flowing parallel to the interfaces, in 
agreement with theoretical calculations [123]. 
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The physical mechanism responsible for the giant magnetoresistance effect is still not 
completely clear. It was originally suggested 11171 that spindependent scattering at the 
interfaces was the dominant contribution. Such spin-dependent scattering is a well known 
phenomenon in magnetic metals [12d]. For instance it is known that Cr impurities in Fe 
scatter up electrons 4-6 times more strongly than down electrons. Schematically one can 
understand this spindependent scattering in the following way. In most ferromagnetic 
metals the s electrons carry the majority of the current since the effective mass of the 
d electrons is quite large. The s bands are approximately parabolic but the d bands are 
exchange split as illustrated in figure 36. In a spin-conserving scattering process spin-up s 
electrons can scatter to the spin-up s or d bands. Similarly a spindown electron scatters to 
the spin-down s or d bands. However as the density of states for the d bands is exchange 
split, the density of states at the Fermi level is different for spin-up and spin-down electrons 
leading to different scattering rates. Impurities can enhance this difference if the impurity 
states are spin split and have energies on one side which are at the Fermi level. 

Figure 36. Schematic illustration of electronic density 
of states for Fe. The density of states for the up spins 
is shown on the right and for the down spins on ihe 
left. Note thal the s band is approximately parabolic 
while he d bands are SpliL This w u l k  in a different 
density of states for Ihe up and down elecuons at the 
Fermi level. 

Figure 37. Spin-dependent scattering mechanism. 
(a) Possible p;uticle motion for spin-up and spin- 
down electrons are shown when the magnetizations 
in neighbouring Fe films an paralleL A diffusive 
scattering event is indicated by a sm. (b )  The 
magnetizations are antiparallel, resulting in a lager net 
number of scalering evenk. 

How such spin-dependent scattering could lead to the giant magnetoresistance is 
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illustrated in figure 37. In (a) we show typical par&icle motions for spin-up and spin- 
down electrons when the magnetizations in neighbouring Fe films are parallel. If a spin-up 
electron reaches an FdCr interface it is l ie ly  to be diffusively scattered. On the other hand 
a spin-down electron can pass through one or more interfaces without being diffusively 
scattered. In (b) we examine the case where the magnetizations of the neighbouring Fe 
films are antiparallel. Here a spin-up electron approaches the FdCr interface from the left 
as before and is diffusively scattered. A spin-down electron on the left passes through the 
left FdCr interface but on reaching the right interface is locally a spin-up electron and 
thus has a high probability of being scattered. Comparing the two situations, we see that 
there are a larger number of scattering events when the Fe magnetizations are antiparallel 
than when they are parallel, and thus the resistivity is greater when the magnetizations are 
antiparallel. In this picture most of the spin-dependent scattering occurs at the interfaces 
because the largest mixing of Fe and 0 occurs at the interfaces. 

The mechanism described above is clearly not the only possibility. Clearly some spin- 
dependent scattering can take place within the bulk of the ferromagnetic films as well. 
Also it is not clear that spin-dependent scattering asymmetries measured for low impurity 
concentrations appropriately represent the kind of scattering asymmetry to be found in an 
interface. These questions will be dealt with later in this section. 

4.2. Theoretical model 
We now tum to a simple theoretical model [125-127] which can describe the general 
features of the giant magnetoresistance. This model is an extension of the Sondheimer- 
Fuchs treatment of the resistivity of a thin film [IZS]. In this case it is assumed that 
the electron m s p o r t  through the multilayer structure is govemed by the semi-classical 
Boltzmann equation 

- ( e l m ) ( E + v  x B ) . A , f + v - A , f = - ( f  - f o ) / t  (101) 

where f, the electron distribution function, depends on both position and velocity. 
The geometry of our unit cell is presented in figure 38 which shows two films of Fe 

separated from a Cr film by a mixing region, m, on either side. Physically the mixing region 
represents the portion of the multilayer in which there are significant densities of both Fe and 
Cr. Experiments in the FeICr system estimate that this mixing region can be on the order 
of 4 8, 01 larger. A static electric field is applied along the x axis parallel to the interfaces. 
A magnetic field is applied along the x axis in order to overcome the antifemmagnetic 
coupling between the Fe films. Note that the broken line separating regions C and D does 
not represent a m e  interface. Instead this is the point at which we take into account the 
change in quantization axis for the electron spin. Such a change is required because the Fe 
magnetizations in neighbouring films are not, in general, parallel to each other. 

The conductivity of the structure is found from the electron distribution function which 
exists in the presence of the extemal elecuic field. In a perturbation expansion of this 
distribution function is given by the Fermi-Dim distribution fo(v) plus corrections, g(z, v) 
due to local scattering, surfaces and interfaces, and the electric field. The fact that the 
scattering rates depend on the position of the electron introduces the spatial dependence 
into the correction term. Thus we write 

f+(%, v) = f p ’ ( p r )  + g y z ,  v). (102) 

Here and in what follows the arrows refer to spin-up and spin-down electrons. For brevity we 
drop the functional dependence of g on z and v from now on. If we substitute equation (102) 
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A B C  D E  F 

1 

Figure 3& Geometry of the Fe/Cr/Fe sandwich including mixing 
regions. The ceme of the mcture is at I = 0, and the boundaries 
of the mixing region are ai z = ia and z = &b. An electric 
field is applied along lhe x axis, as shown. The z = 0 dotted Line 
is an artificial boundary at which ihe change in quantidon axis +L 

c is inucduced. (After [tn].) 

into the Boltzmann equation and retain only the linear terms in the perturbation we obtain 

agfcJ . ) /a z  + gtcJ.)/rTcJ.bx = (eE/mu,)afo/au,. (103) 

The term arising from v x B in the Boltzmann equation is also neglected since it is small. 
In this equation e is the electron charge, r is a spin-dependent relaxation time, and m is the 
effective mass of the electron in each region. It is convenient to separate g into two parts: 
g+ for electrons with positive U, and g- for electrons with negative U,. Equation (103) 
is a simple first-order differential equation for g. The solution has the same form in each 
region. For example in region A one finds 

Similar expressions hold for the other regions. The only unknowns at this point are the 
values of F appropriate for each region. These are functions of v and are found by using 
the boundary conditions at the interfaces between regions. 

The boundary conditions connect the electron distribution functions at the interfaces. 
Since we assume that the Fermi-Diw distribution function is spatially independent, only 
the g terms enter the boundary conditions. For example at the outer surface the distribution 
function g for an electron leaving the surface is equal to the distribution function for an 
electron of the same spin striking the surface multiplied by the probability p of a specular 
scattering event. Thus for the finite sandwich structure, where z = rtc represents the outer 
boundary, one obtains 

at z = -c ( 105) 

(106) 

The infinitely extended superlattice structure may be mated by assuming perfectly reflecting 
surfaces at the outer boundaries (i.e. p = 1 in equations (105) and (106)) but setting the 
position of the interface at f ( c  + b) /2 .  The interior boundary conditions are derived in a 
similar manner. For example the distribution function for electrons leaving the interface at 
z = b into region F depends on the probability of electrons in F hitting this interface and 
being reflected back into F, and the probability of elect” i” region E being transmitted 
into region F. Thus one boundary condition at z = b is given by 

till - t l 4 l  

t(l) - t (4l  at = +c, 

gA+ - PgA- 

8,- - P8F+ 
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where Tt and R t  are the transmission and reflection coefficients for an up spin. In principle 
these could be estimated using a free-electron-type model for each material by including 
contact potentials that arise from the differences in work functions for the different materials. 
An example of such a calculation is found in 11291, but we will assume that the work 
functions for our materials are approximately the same. This is, in fact, reasonable for the 
FeKr system. In this case we will assume that the transmission coefficient is always unity 
and the reflection coefficient is zero. The remaining boundary conditions that come from 
true interfaces are obtained in a similar manner. We find 

(108) ti&) - T?(&) t(&) t(i) at = +b 
gE-  - gF- + gE+ 

&+ fl&l - - T t ( & ) g c ’  + R?($)gi!) at =+a (109) 

gD- t1&) - - T?l$)gtJ) + R ? ( & ) g E )  at = +a (110) 

(111) 

(112) 

(113) 

tu) ti&) ?(&I tu) tu) at = -a 

~ ( J I  - Tt(&)gf(rl+ R t t ~  tu) at = -a 
&+ = T gB+ + R  & -  

&I- - C- gB+ 
t(&) tll) + R f ( $ ) g i 2 )  at = -b gB+ = gA+ 

(114) t ( l 1  - TTr$lg7cr, + R t ( J ) g i y )  at z = -b. g,- - 

The remaining boundary conditions occur at the artificial interface at z = 0. These change 
the description of the spin quantization axis from one Fe film to the proper quantization 
axis for the neighbouring Fe film. If the magnetizations of the two films make an angle 0 
with respect to each other. one obtains 

g:: =  COS^(^/^)&^' + sin2(~/2)g$+’ at z = o (115) 

g,- tlJ1 - - c~~2(e/2)g:!) + sinz(0/2)g$J’ 

The set of equations (1054116) provide 24 conditions for the 24 unknown Fk’), . . . , FF* t(O . 
(116) at z = 0. 

These are solved for numerically. There have also been @aments for structures with 
fewer interfaces where symmetry can be used to obtain analytic expressions for the unknown 
coefficients. Such treatments are helpful in that analytic forms for the magnetoresistivity 
can eventually be obtained [ 1301, 

Once all the values of F are known the values of g in each region can be evaluated and 
then the current density in each region is found by using the equation 

The current in the whole structure may now be calculated by integrating the current density 
over z. This results in a relationship between the current and the applied electric field which 
gives the resistance of the structure. The external magnetic field changes the resistivity 
simply by changing the angle 0 between neighbouring Fe films. 

We comment briefly on the theoretical treatment. The original implementation of a 
Sondheimer-Fuchs-type calculation did not include a mixing region but instead introduced 
diffusive scattering parameters DJ and D+ to account for the asymmeny in scattering at 
a sharp Fe/Cr interface [1251. It was pointed out that in the limit where the mean free 
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path is much larger than the film thickness, the Sondheimer-Fuchs theory does not give 
a complete description because it allows electrons near the interface to propagate parallel 
to the interface for very long distances [131,132]. This problem with the semi-classical 
method was reflected in the fact that the semi-classical model had difficulty in obtaining 
correct values for both the resistivity and the magnetoresistivity for the multilayer samples. 
'ISlpically if the magnetoresistivity was correct the resistivity was somewhat (20-30%) too 
low. A proper quantum-mechanical-based treatment of the giant magnetoresistance effect 
does not have this problem as it treats both bulk scattering and interface scattering in the 
Same fashion [132,133]. Such a theory is however significantly more complicated. 

Because of the simplicity of the semi-classical model various modifications have been 
introduced into the original treatment in order to correct its deficiencies. One such 
modification is the introduction of the mixing region as developed in [I271 and reviewed 
here. Altematively, the inclusion of anisotropic conductivity due to grain boundary 
scattering has also been shown to allow the Sondheimer-Fuchs-type models to calculate 
both resistivity and magnetoresistivity correctly [134]. Recently two real-space quantum 
calculations carried out with Kubo formalism have shown that the semi-classical model 
is effectively equivalent to the quantum model if the Fe/Cr interfaces are treated in the 
mixing region method as developed here [135,136]. Thus with these improvements, the 
semi-classical model appears to provide a qualitative and quantitative understanding of the 
influence of the main parameters (mean free path to the electrons, thickness the magnetic 
and non-magnetic layers, asymmetry in scattering of up spins and down spins) on the 
magnetoresistance. 

4 3 .  Behaviour of magne!oresistance as afwrction of struc!ure 

We now present some of the results of the semi-classical model and make compaisons 
to experimental data We have already shown experimental and theoretical results for 
magnetoresistance as a function of applied field for a 120 A Fe/lO 8, Cd120 8, Fe 
sandwich structure in figure 35. The variation of the angle 0 between the magnetizations 
in neighbouring Fe films-necessary for calculating the magnetoresistance as a function of 
field-is found by minimizing the sum of the exchange Zeeman and anisotropy energies 
for this structure. The agreement between theory and experiment is quite reasonable. Other 
experimental work [I211 has shown that the magnetoresistance varies as cosz(0/2). This is a 
particularly interesting result in light of the fact that the mansmission coefficients which arise 
due to the change in the quantization axis also vary as cos2(0/2) as seen in equations ( I  15) 
and ( I  16). The full theoretical treatment developed here shows that the correct angular 
dependence is indeed quite close to a cos2(0/2) law. 

It is interesting to see how the magnetoresistance depends on the structure. In figure 39 
we present the results of a calculation for magnetoresistance as a function of the thickness 
of the Cr spacer layer. Here we see a very rapid decrease of the magnetoresistance as the 
thickness of the Cr spacer layer is increased. The physical reason for this is clear. The 
mechanism outlined in figure 31 depends on a significant number of spin-down electrons 
being able to cross the spacer layer since it is the difference in the scattering of spin- 
down electrons for the parallel and antiparallel configurations which gives rise to the 
magnetoresistance. Since the mean free path in Cr is fairly short (1C-20 8,) increasing 
the Cr thickness means that most electrons will be scattered inside the Cr layer and the 
magnetoresistance is significantly reduced. 

In all cases we see that the superlattice has a significantly larger magnetoresistance 
than the single sandwich structure. The reason for this is that we have assumed completely 
diffusive scattering at the outer boundaries of the sandwich. This increases spin-independent 

R E Camley and R L Sramps 
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Spin-dependent 
interface scattering only 

Spin-dependent 
interface scattering only 

;j \ superlattice 

tCr (A) 

Figure 39. Magnetoresistance as a function of Cr 
film thickness. The magnetoresistance decreases rapidly 
with increasing Cr film t h i c h w  for both the simple 
sandwich smcLure and the superlattice. The parameters 
for the calculation are A% = 40 A, arr = 1. LF. = 15 A, 
Amix = 18 A, mmix = 0.217, I,* = 4 A, A 0  = 20 A, 
= 1. The mean free paths A refa to the average value 
which includes both spin-up and spin-down eleclrons. 
CI = p 4 / p  t gives the scattering asymmetry for each 
negi0". 

Figure 40. Magnetoresistance as a function of Fe 
film thickness for spin-dependent interface scamring. 
Increasing the Fe film thickness merely increases the 
number of scatterbg events within the films. thus 
increasing the total mistance. The magnetoresistance is 
here determined by spindependent interface scattering 
and so the net effect deneases with increasing Fe 
thickness. The parameters for the calculation are AFC 
= ~ o A , -  = I,  A.* = 18 A,u,* = 0.217, tmir = 4  A. 
&=20 A, - = I ,  to = 4  A. 

scattering and lowers the magnetoresistance. This Seems to be in accord with current 
experimental results. However it would be interesting to try various experimental treatments 
to make the outer surfaces of the sandwich structure have a larger amount of specular 
scattering. Then, in principle, one could obtain quite large magnetoresistances in the 
sandwich as well as in the superlattice. 

The results for the magnetoresistance as a function of the magnetic layer thickness are 
more complicated. In this case the results depend strongly on whether the magnetoresistance 
is due to spin-dependent bulk scattering or spin-dependent interface scattering. If one has 
pure spin-dependent interface scattering then increasing the Fe thickness simply results in 
more of the electrons being scattered within the Fe films. Thus the dominant contribution 
to the resistivity comes from scattering which does not involve the electrons crossing from 
one Fe film to another. In this case the magnetoresistance monotonically decreases as 
the thickness of the Fe layer is increased. This can be seen in figure 40. In contrast, 
for primarily spindependent bulk scattering, increasing the Fe thickness initially provides 
more opporhtnities for spin-dependent scattering. Thus in very thin Fe layers most of the 
scattering wcurs within the Cr and the magnetoresistivity is low. As the Fe becomes thicker 
the mechanism outlined in figure 37 becomes possible and the magnetoresistivity increases. 
Finally as the Fe thickness becomes significantly larger than a mean free path most of the 
scattering is within one Fe film and the magnetoresistance again decreases. This explains 
the behaviour of the magnetoresistance as a function of 

In figure 42 we explore how the magnetoresistance depends on the number n of unit 
cells and on the mean free path in the ferromagnet. The structure is (Fe/Cr),/Fe. This 
calculation is performed for the case where the scattering is primarily interface scattering. 
As the mean free path is increased the number of spin-independent scattering events is 
decreased while the number of spin-dependent scattering events is about the same. Thus 
the magnetoresistance increases. Also, as n is increased the effect of the spin-dependent 

seen in figure 41. 
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Spindependent bulk 
scaltering onlv 

superlanice Figure 41. Maptoresistance as a function of Fe film thickss  for 
spin-dependent bulk scaoering. Initially increasing the Fe film thickness 
inatases the net magetoresistance effect by inneasing the probability of 
spin-dependent scattering. When the Fe thickness becomes much larger 
than lhe mean free path in Fe. the magnetoresistance decreases again with 
increasing Fe thickness. The parameten for the calculation are AR = 40 A, 

20 A. ucr = 1. 
re = 4 A. The mean free paths refer to the average value which includes 
both spin-up and spin-down electrons. 

g2 I T 1  ~~~ 

sandwich 0.5 

0 

5 
= 0.333, A- = 18 A. mmu = I. tmk = 4 A. A e  

loo 

$Fe IN 
*O0 

Figure 42. Magnetoresistance as 
a function of mean free path for 
different size muitilayers. The 
experimental results are given by 
the symbols and the theory is 
given by the full curves. The 
magnetoresistance increaser with 
inneasing mean free path in Fe 
0.1) and with increasing number of 
magnetic films. (After [126].) 

diffusive scattering at the outer layers is reduced and the magnetoresistance is also increased. 

4.4. Bulk and interface spin-dependent scattering and the influence of impurities at the 
interfaces 

There has been a fair amount of controversy about whether the spin-dependent scattering 
found in experiments is primarily interface or bulk scattering. Theoretical calculations 
[127,132] (which show excellent agreement with experimental results) for the Fe/Cr system 
indicate that about 65-758 of the magnetoresistance arises from scattering at interfaces. 
In contrasl NigoFezo/Cu multilayer structures have been analysed within a picture where 
bulk scattering is dominant [I%]. (This requires a scattering asymmetry p ~ / p +  = U15- 
1/20 which is apparently reasonable for Permalloy.) Other models for Co/Cu superlattices 
also invoke bulk spin-dependent scattering [137]. However a recent experiment reports 
dramatic enhancement of magnetoresistance in NislFel&u multilayers by the addition of 
thin CO layers at the interfaces, indicating that interface effects may be very important in 
these systems [138]. It is fair to say that the general situation is not completely resolved at 
this time, and some material combinations may display primarily interface scattering while 
others seem to have a large component of bulk scattering as well. It is expected that careful 
comparisons of experimental data to curves such as figures 39-41 should be able to establish 
whether bulk or interface scattering is dominant in a particular sample. Some work in this 
direction has already been completed [134]. 
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The question of whether the magnetoresistance is due to bulk or interface spin- 
dependent scattering impacts on another topic, the role of interface roughness in giant 
magnetoresistance [139-1421. Clearly if the magnetoresistance is primarily due to bulk 
spin-dependent scattering then increasing interface roughness would increase the resistivity 
in general and the magnetoresistivity would be reduced. In contrast, interfacial spin- 
dependent scattering might reasonably be expected to increase with interfacial disorder 
and the magnetoresistivity should increase. Such a result is in qualitative agreement with 
both quantum models, where the giant magnetoresistance is a function of spin-dependent 
random potentials at the interface, and semi-classical models, where more roughness could 
result in a larger mixing region. 

There are some experimental results indicating that the Fe/Cr system shows increased 
magnetoresistance with increased interfacial roughness. In one study [I391 the interfacial 
roughness was inferred from x-ray diffraction measurements on sputtered Fe/Cr superlattices. 
In particular, a larger intensity of the first Bragg peak arising from the superlanice structure 
was used to indicate a system with less interfacial roughness. Increasing background Ar 
pressure or decreasing Fe sputtering power generally resulted in rougher interfaces and an 
increase in magnetoresistance. 

An interesting attempt to confirm the picture of spin-dependent scattering as the origin 
of the giant magnetoresistance effect involved the introduction of impurities at the FelCr 
interfaces [143]. These additional impurities have known asymmetries for scattering of spin- 
up and spin-down electrons. If the spindependent scattering mechanism is correct, then 
when the impurities have the same asymmetric scattering as Cr in Fe there should only be a 
small change in the magnetoresistance as a function of impurity content. In contrast if the 
scattering asymmetry of the impurity is opposite to Cr in Fe the magnetoresistance should 
be significantly decreased. Of course such a picture assumes that scattering asymmetries 
measured at low concenbations of impurities in bulk Fe have some relevance to the high- 
concentration region found at the interfaces. 

Many different impurity elements have now been added to the Fe/Cr interface region in 
experimental studies [143,144]. The scattering asymmetry parameter (I = p ~ / p ,  for these 
elements as dilute impurities in Fe is given in table 1. Table 1 also summarizes the change 
in the magnetoresistance when these elements are intrcduced at the Fe/Cr interface. Despite 
the scatter in the asymmetry parameter, impurities which have values of a which are close 
to those found for Cr do not degrade the magnetoresistance significantly. Impurities which 
have U significantly larger than those found for Cr (i.e. weak asymmetry for 0.5 c (I c 1 or 
scattering asymmetry opposite to that of Cr for (I > 1) result in significant reduction of the 
magnetoresistance. Despite these intial indications that the scattering asymmetry found in 
the previously measured values of a is important, we emphasize that the physical situation 
in these experiments .is quite complex and much work remains to be done. 

The theoretical development presented in this section can be applied in a straightforward 
manner to the calculation of magnetoresistance with impurities in the ‘mixing region’. In 
this case one can start an estimation for the scattering asymmetry a in the mixing region 
by using Matheson’s rule to find the total resistivity due to scattering from Cr and from the 
impurity for spin-up electrons. This is also performed separately for spindown electrons 
and then the ratio pJp1 is formed. The effect of the impurities on the mean free path in 
the mixing region may also be included. Theoretical calculations and experimental results 
for the magnetoresistance as a function of impurity content are shown in figure 43. The 
behaviour of AI and Mn as impurities are clearly quite different, with A1 causing a very 
rapid decrease in the magnetoresistance. Increasing Mn also causes a decrease, but it is 
essentially the same decrease that one observes when the Cr layer thickness is increased. 
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Table 1. 

Impurity element ol = p ~ / p f  Effect on magnetoresistance Reference 
V 0.124.13 slow decrease [143.1441 
Cr 0.17-0.37 slow decrease [143.1441 
M" 0.094.17 slow decrease [143.144] 
MO 0.21 slow decrease [I441 
Ru 0.37 slow decrease [I441 
TI 0.25-0.66 modemedenease [I441 
AI 8.6 rapid decrease [I431 
I r  9.0 rapid decrease (1431 
G e  6.2 rapid decrease [I431 

This behaviour is consistent with the scattering asymmetries of AI and Mn impurities in 
bulk Fe. 

M-ihicknesslperiod (A) 

Figure 43. Mapemresistance of FeKr multilayers ffr a function 
of the thickness of impurity layer added at h e  WCr interface. 
Circles and squares indicate experimental data from [1431. Full 
and broken C w e s  are heoretical calculafions fmm [ln]. A Clear 
difference is seen between the results for Mn (which has a close 
m the value for Cr) and AI (which has an a very different from 
lhat of Cr). The different theorefical curyes are based on the range 
of assumed values for ol for each impurity. 

4.5. Additional systems and theoretical treatments 

The examples considered earlier dealt with compounds where the antiparallel arrangement 
was introduced by some effective antiferromagnetic exchange between ferromagnetic films. 
The giant magnetoresistance does not seem to depend on the antifemmagnetic exchange, 
but rather simply on the possibility of changing from antiparallel orientation to parallel 
orientation. A number of systems have been developed which show giant magnetoresistance 
but without antiferromagnetic exchange between the ferromagnetic films. These include 
sandwich structures where the antiparallel alignment is obtained by making the coercive 
fields for the two different ferromagnetic films different [126,145] and structures which are 
fabricated in thin stripes so that dipolar fields cause an antiparallel orientation [1461. 

A particularly interesting structure where antiparallel alignment can be obtained without 
antiferromagnetic coupling between the ferromagnetic films is the so-called spin valve. Here 
one has a sandwich w h m  one ferromagnetic film, say the lower film, is exchange coupled 
to an antiferromagnet [147-1491. In this case application of a weak external field can 
readily change the direction of the magnetization for the upper ferromagnetic film, but the 
magnetization of the lower ferromagnet is held antiparallel to the field by the coupling to 
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the antiferromagnet. At higher fields the magnetization of the lower film is also forced to 
lie in the direction of the field, resulting in parallel alignment. 

A number of microscopic theoretical approaches have also been employed to understand 
the giant magnetoresistance in layered structures. These have concentrated on viewing the 
system directly from an electronic band structure calculation [150-153]. Calculations have 
been performed within the coherent potential approximation [151,152]. One calculation 
using the tight-binding method explicitly included roughness effects at the interfaces [1531. 

Finally we note that giant magnetoresistance is not limited to layered structures but 
has also been found in granular thin films, particularly in CO-Ag [154-156] and CoCu 
systems [157]. Giant magnetoresistance in magnetic granular films has also been discussed 
theoretically [158]. The origin of giant magnetoresistance in these alloys is also attributed 
to spin-dependent scattering. Here it is assumed that at low fields the magnetizations of 
small particles of CO are randomly oriented and that at high fields the magnetizations are 
all aligned with the extemal field. Thus one has a similar orientational effect as in the 
multilayer stmcture and the same mechanism can be used in both cases. 

5. Conclusion 

We have seen that the physics of magnetic multilayers and superlattices is clearly a rich 
and varied field, with questions to challenge the experimentalist and theorist alike. Our 
presentation has been a survey of only some of the many interesting questions, and has out 
of necessity completely ignored a number of equally fascinating phenomena 

One area of intense research has been concerned with how intrinsic magnetic properties 
are effected by superlamce structures. Therefore questions about magnetic 'dead' layers, 
enhanced magnetic moments, and contributions to anisotropies from elastic strains and 
interface effects have been addressed using a variety of experimental techniques and 
theoretical band structure calculations [12,159-162]. The formation of anisotropies in 
multilayer structures is particularly fascinating, since it appears possible to control the type 
and orientation of the anisotropy with the superlattice construction L163.1641. Anisotropy 
can also be responsible for magnetic phase nansitions. For example an easy axis 
perpendicular to the film can lead to a phase transition involving a reorientation of spin 
direction from parallel to the film plane to perpendicular. This has been examined both 
theoretically [I651 and experimentally [166]. 

In order to complete our survey of this field, we cannot ignore the multitude of exciting 
possible applications for many of the phenomena we have described. Some of the most 
promising applications involve the giant magnetoresistance effect described in section 4. The 
order of magnitude improvement in sensitivity over conventional magnetoresistance makes 
this phenomenon attractive for a surprisingly large class of device applications. Among 
the various devices which use magnetoresistance sensors are [167,168] pressure sensitive 
switches such as those used in electronic keyboards, magnetic read-out heads, magnetic 
sensors such as those used in traffic control, and novel magnetic data storage devices [169]. 

The magnetization of magnetic materials is also an often used property for other classes 
of applications. Long-lasting rewritable data storage materials are usually magnetic. New 
materials consmcted from multilayers composed of thin magnetic films allow for much 
higher storage densities than possible with conventional magnetic media [170]. These are 
particularly well suited for optical writing and reading technologies which use the optical 
K m  rotation effect [1711. There are obvious advantages to using a multilayer consmction, 
since this allows one to tailor the material properties to the specific device need. Some 



3782 

of the most relevant magnetic properties that can be controlled through the superlattice 
geometry are anisotropies and interlayer exchange. We have seen how simply modifying 
the interlayer exchange can lead to radically different thermodynamic behaviour, an aspect 
that is critical in the optical writing of data onto magnetic media. 

Finally we comment on applications involving the optical properties of magnetic 
superlattices. Superlattices constructed from antiferromagnetic materials are of possible 
interest to communications and signal processing technologies for devices that work at 
wavelengths in the infrared 1881. The optical response of antiferromagnetic multilayers and 
superlattices at these wavelengths is determined by their dynamic magnetic response. Not 
only are linear response characteristics important, but their non-linear response is also of 
great interest [88]. Potentially useful features include a variety of different phenomena such 
as harmonic generation and bistable transmission. 

The short description given here of possible applications is by no means complete, nor 
is it appropriate to go too deeply into this subject here. We have instead presented only an 
outline of some of the more interesting possibilities currently under consideration or even 
development, and are certain that the future will bring even more. 

R E Camley and R L Scamps 
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